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Today: Readings:
 Graphical models 2 « Bishop chapter 8.1 and 8.2
* Probabilistic inference
in Bayesian Networks



https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/Bishop-PRML-sample.pdf

Poll: Answer Question 1



Bayesian Networks Definition

A Bayes network represents the joint probability distribution
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of
Conditional Probability Distributions (CPD’s)

 Each node denotes a random variable
« Edges denote dependencies
* For each node X; its CPD defines P(X; | Pa(X;))

* The joint distribution over all variables is defined to be

P(Xq...Xn) = H P(X;|Pa(X;))

Pa(X) = immediate parents of X in the graph



Example

material

Exam, and ace the HW

<. <
<
< <D

Attending class and Studying both cause you to Know the course

Knowing the course material determines whether you pass the

Parents | P(K=1|S,A) | P(K=0|S,A)
<S§, A>

<1, 1> 0.9 0.1

<1, 0> 0.8 0.2

<0, 1> 0.7 0.3

<0, 0> 0.1 0.9




Inference in Bayes Nets

Given a joint distribution represented by a Bayes Net,
how can we calculate arbitrary probabilities over

subsets of variables?
— P(X3=1]| X4=a, X;7=0)
- P(X7=1)

Unfortunately, in general, intractable (NP-complete)

Fortunately, for certain types of graphs, tractable
Fortunately, we can sometimes estimate them tractably



Prob. of joint assignment: easy Ny

Suppose we are interested in joint
assignment <S=s,A=a,K=k,E=¢e,H=h>

What is P(s,a,k,e,h)?

we'll use p(a,b) as shorthand for p(A=a, B=b)



Prob. of joint assignment: easy Ny

/
N
./

Suppose we are interested in joint
assignment <S=s,A=a,K=k,E=¢e,H=h>

What is P(s,a,k,e,h)?
P(s,a,k,e,h) = P(s)P(a)P(k|s,a)P(elk)P(h|k)

Efficient. O(n) for n variables.
l.e., look up n values, multiply them

we'll use p(a,b) as shorthand for p(A=a, B=b)



Marginal probabilities P(X)):

 How do we calculate P(H=1) ?

1 1 1 1
PH=1)=) Y Y Y P(S=s,A=a,K=FkE=¢H=1)
5=0 a e=0




Marginal probabilities P(X)): T
 How do we calculate P(H=1) ?

P(H =1) =§: IJ 1J§:P(S=S,A=a,K=k,E=e,H= 1))

P(H=1)= S PP P(S = s)P(A=a)P(K = k|S = s,A = a)P(E = e|K = k)P(H = 1|K = k)

Inefficient: O(n 2(™1) for n Boolean variables.



Only One Unobserved Variable: Sl

< at Z:
& T ®

How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

S=s,A=a,K=1,E=¢,H=h)
P(S=s,A=a,E=¢,H=h)

P(K=1|S=3,A=G,E26,H=h):P(



Study Attend

Only One Unobserved Variable: =T

J/ oo o o
OERCE=
How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

P(S=s,A=a,K=1,E=¢,H=h)
P(S=s,A=a,E=¢,H=h)

P(K=1S=s,A=a,E=¢,H=h) =

_ P(S=s,A=a,K=1,E=¢,H =h)
- P(S=s,A=a,K=1,E=¢,H=h)+P(S=s,A=a,K =0,E =¢,H = h)

Efficient. O(2n) for n Boolean variables.



D-Separation

See recommended reading: Bishop Chapter 8.1-8.2



D-Separation Rule to determine Cond. Indep.
IS based on three simple subgraphs:



Simple Network 1: Head to Tail @\

prove A cond indep of B given C?
le., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(alc) p(b|c)

p(a,b,c) _ p(a)p(c|a)p(blc)
p(c) p(c)

p(a, b|C) -

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 1: Head to Tail @\

prove A cond indep of B given C?
le., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)
Which we’ll write p(a,b|c) = p(alc) p(b|c)
oy plabe) _ pla)p(cla)p(ble)
P, = =) p(O
_ p(a)p(c|a)
=0 p(blc)

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 1: Head to Tail @\

prove A cond indep of B given C?

le., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(alc) p(b|c)

ey Plabe) _ pla)p(cla)p(ble)
P, = =) PO

_ p(a)p(c|a)
=0 p(blc)
_ pla,c)

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 1: Head to Tail @\

prove A cond indep of B given C?

le., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(alc) p(b|c)

ble) = Pa:b.0) _ p(a)p(cla)p(bo
P, = =) PO

_ p(a)p(c|a)
=0 p(blc)
_ pla,c)
= p(ale)p(ble)

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 2: Tail to Tail (A)

prove A cond indep of B given C? ie., p(a,b|c) = p(alc) p(b|c) e

This is also provable. [try it!!!]

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 3: Head to Head @\

prove A cond indep of B given C? ie., p(a,b|c) = p(alc) p(b|c) @

This is NOT true!

/
p(a, blc) # p(alc)p(blc)

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 3: Head to Head @\

prove A cond indep of B given C? ie., p(a,b|c) = p(alc) p(b|c) @

This is NOT true!

/
p(a, blc) # p(alc)p(blc)

However,  p(a,b) = p(a)p(b)

let's use p(a,b) as shorthand for p(A=a, B=b)



Simple Network 3: Head to Head @\

prove A cond indep of B given C? ie., p(a,b|c) = p(alc) p(b|c) @

This is NOT true!

/
p(a, blc) # p(ale)p(blc)
However,  p(a,b) = p(a)p(b)

Intuition: A: Earthquake
“Explaining away”

C: Motion Alarm

B: Burgler

let's use p(a,b) as shorthand for p(A=a, B=b)



Suppose we have three sets of random variables: X, Y and Z

X and Y are D-separated by Z (and therefore conditionally indep, given Z)
iff every path from every variable in X to every variable in Y is blocked

A path from variable X to variable Y is blocked if it includes a node such
that either (1) or (2) holds:

(1). arrows on the path meet either head-to-tail or tail-to-tail at a node in Z

On HONROS 20

(2). arrows on the path meet head-to-head at a node, and neither that node,

nor any of i’gs descendants, isin Z @@




X and Y are D-separated by Z (and therefore conditionally indep, given 2Z) iff every
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

W@ OO0

(2) Arrows on the path meet head-to-head at a node, and neither that node, nor any of
its descendants, is in Z Qf)_’(\?)ﬂ
N\

> @D\

X4 indep of X1 given X2? @
X4 indep of X1 given X3? \ /

X4 indep of X1 given {}? @

X4 indep of X1 given X57? \@



X and Y are D-separated by Z (and therefore conditionally indep, given 2Z) iff every
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

W@ OO0

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of
its descendants, is in Z Qf)_’(\?)ﬂ
N\

J
J,

X4 indep of X1 given X2? YES (Condition 1) @
NO /

X4 indep of X1 given X3? \
X4 indep of X1 given {}? YES (Condition 2) @

X4 indep of X1 given X5? NO \@



X and Y are D-separated by Z (and therefore conditionally indep, given 2Z) iff every
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

W@ OO0

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of
its descendants, isin Z (A)y—{c)—(B

B
-/ \—/

X1 indep of X3 given X2? @
X3 indep of X1 given X2? \ /

X4 indep of X2 given {}? @

®



X and Y are D-separated by Z (and therefore conditionally indep, given 2Z) iff every
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

W@ OO0

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of
its descendants, isin Z (A)y—{c)—(B

B
-/ \—/

X1 indep of X3 given X2? YES (1) @
X3 indep of X1 given X2? YES (1) \ /

X4 indep of X2 given {}? YES (2) @

®



Markov Blanket

The Markov blanket of a node x; comprises the set
of parents, children and co-parents of the node. It
has the property that the conditional distribution of
X, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the
Markov blanket.

- Computational efficiency in many cases!

from [Bishop, 8.2]



Why Markov Blanket is Useful for Inference

P(hla,c,j,9) = 2

(m—@

O

© ®

©

let's use shorthand P(a) to represent P(A=q)



Why Markov Blanket is Useful for Inference

P(hla,c,j,g) = ? f
D,

(&)
H—C—®

O o) ® Whatis the Markov Blanket of H?

Poll: Answer Question 2

let's use shorthand P(a) to represent P(A=q)



Why Markov Blanket is Useful for Inference

P(hla,c, j,9) = P(hlc, j)

©
(m—@

Filed = Plg?;:,c J;) ) P<c>p<h|aéﬁifff@ﬁfﬁ|c>p<]-|ﬂh>
- P(h[c)P(j|h)
Q O P(h|c)P(j|h) + P(=h|c)P(j|-h)
e 1 o

let's use shorthand P(a) to represent P(A=q)



Bayes Net Inference by generating data samples
So far: exact inference methods, sometimes expensive

Next: generate data by sampling joint distribution,
then estimate probabilities (MLE) from counts over
this datal




Generating a sample from
joint distribution: easy

How can we generate random samples
drawn according to P(S,A,K,E,H)?




Generating a sample from O

joint distribution: easy

How can we generate random samples
drawn according to P(S,A,K,E,H)?

To generate a random sample for roots of network ( S or A):
1. let® = P(S=1) # look up from CPD

2. r=random number drawn uniformly between 0 and 1

3. if r<B then output S=1, else S=0

o _
r<f > S=1 ' >0 > S=0
r= r=1



Generating a sample from
joint distribution: easy |

How can we generate random samples
drawn according to P(S,A,K,E,H)?

To generate a random sample for roots of network ( S or A):

1. let® = P(S=1) # look up from CPD
2. r=random number drawn uniformly between 0 and 1

3. if r<B then output S=1, else S=0 <0 > S=1 ,-‘ 8 > Ba

|
r=0

To generate a random sample for K, given S=s, A=a:

1. let6 = P(K=1|S=s,A=a) # look up from CPD

2. r=random number drawn uniformly between 0 and 1
3. if r<B then output K=1, else K=0

N
r:

4




Generating a sample from
joint distribution: easy

We can estimate probabilities like P(E=e) by “W

generating many samples from joint distribution, then
counting the fraction of samples (MLE) for which E=e

Similarly, for anything else we care about, calculate its maximum
likelihood estimate from many generated examples

e.g., P(A=1|E=1, H=0)

- General method for estimating any probability term
—> Alternative to exact closed form solutions
- Can be computationally expensive, depending on ...




Generating a sample from

joint distribution: easy

We can easily sample P(S,A,K,E,H)

We can use multiple samples to estimate P(S,A,K.E | H=1)

_ _ ><
But if P(H=1) very small, most samples will have H=0 @

~~
[0 o )
—

Can we directly sample P(S,A,K,E | H=1), forcing H to be 1? o/



Gibbs Sampling: (o) (o)

N P

Goal: Directly sample conditional distributions G_“_j
POt Ko | Xy, oo Xo0) O/ N
Approach: ~—r

- start with the fixed observed X,.1, ..., X
plus arbitrary initial values for the unobserved X,©),... . X.©)

- lterate: for sample s=0 to a big number:
X~ P(XX5, X5 X X e X))
X5~ P(Xo| X X XS X et X))

rs+1 r rs+1 rs+1 s+ 1 - -
X ~ P(X,| X7 X5, . X Xoits oo X))

n 2 * “An-1
Eventually (after burn-in), each sample will constitute a sample of the true

P(X1,.. 0. X0 | Xnsts ooy Xiy)
* but often use every 100th sample, since iters not independent

X ~ P(X) means X is drawn randomly from P(X)



Gibbs Sampling:

Goal: Directly sample conditional distributions
P X | Xoats ooy Xo) ‘/ -
Approach: @

- start with the fixed observed X,.1, ..., X
plus arbitrary initial values for the unobserved X,©),... . X.©)

- lterate: for sample s=0 to a big number:
‘\'f H P( ‘\'1 |‘\'5 ‘\'_-';... ‘\',: ,\',, S PETE 4\'111)
X5~ P(Xo| X7 X X X X))

x| By the way...
How would we generate this sample?

IS+ l > S
X5 o P(X,| X

n \

Eventually (after burn-in),
P(X4,.. X0 | Xosts eeey Xi)

* but often use every 100th sample, since iters not independent




Study Attend

Only One Unobserved Variable: =T

J/ oo o o
OERCE=
How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

P(S=s,A=a,K=1,E=¢,H=h)
P(S=s,A=a,E=¢,H=h)

P(K=1S=s,A=a,E=¢,H=h) =

_ P(S=s,A=a,K=1,E=¢,H =h)
- P(S=s,A=a,K=1,E=¢,H=h)+P(S=s,A=a,K =0,E =¢,H = h)

Efficient. O(2n) for n Boolean variables.



Gibbs Sampling: (o) (o)

Goal: Directly sample conditional distributions /Gil
P(Xq,... X0 | Xisqy s X)) >
Approach: ~—

- start with the fixed observed X,.1, ..., X
plus arbitrary initial values for the unobserved X,©),... . X.©)

- iterate for s=0 to a big number:
X~ P(XX5, X5 X X e X))
X5~ P(Xo| X X XS X et X))

-s+1 F 1 vs+l v+l rs+l v y
X ~1)(‘\,,|‘\l XS L XD X e X))

n 2 n—1

Eventually (after burn-in), each sample will constitute a sample of the true
P(X1,.. 0. X0 | Xns1s ooy Xin)

* but often use every 100th sample, since iterations not independent



Gibbs Sampling: Q p
Goal: Directly sample conditional distributions
P, X | Xuets oors Xon) ‘/ \

Approach:

- start with the fixed observed X,.1, ..., X
plus arbitrary initial values for the unobserved X,©),... . X.©)

- iterate for s=0 to a big number:
X~ P(XX5, X5 X X e X))
X5~ P(Xo| X X XS X et X))

rs+1 - rs+1 rs+1 rs+1 - g
X ~ P(X,| X7, X5, L X X e X))

n 2 n—1

and need only the Markov Blanket at each step! @ .7 0O
® ©

Gibbs is a special case of Markov Chain Monte Carlo methods



Inference in Bayes Nets

Worst case is intractable (NP-complete)

For certain cases, tractable exact solutions

— Assigning probability to full joint assignment of variable values
— Or if just one variable unobserved: P(X,| X{,X,, ...)

— Other special cases

Can often estimate probabilities by sampling the probability distribution:
Monte Carlo methods

— Generate many samples, then use MLE estimates from samples
— Gibbs sampling (example of Markov Chain Monte Carlo)

Many other approaches beyond this class

— Variational methods for tractable approximate solutions

— Junction tree, Belief propagation, ...

— see Probabilistic Graphical Models course 10-708 (which Matt is teaching!)



