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Today:

• Graphical models 2
• Probabilistic inference 

in Bayesian Networks

Readings:

• Bishop chapter 8.1 and 8.2
https://www.microsoft.com/en-
us/research/wp-
content/uploads/2016/05/Bishop-
PRML-sample.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/Bishop-PRML-sample.pdf


Poll:  Answer Question 1



Bayesian Networks Definition

A Bayes network represents the joint probability distribution 
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 
Conditional Probability Distributions (CPD’s)

• Each node denotes a random variable
• Edges denote dependencies
• For each node Xi its CPD defines P(Xi | Pa(Xi))
• The joint distribution over all variables is defined to be

Pa(X) = immediate parents of X in the graph



Example

• Attending class and Studying both cause you to Know the course 
material

• Knowing the course material determines whether you pass the 
Exam, and ace the HW

Study Attend

Know

Exam HW

Parents
<S, A>

P(K=1|S,A) P(K=0|S,A)

<1, 1> 0.9 0.1

<1, 0> 0.8 0.2

<0, 1> 0.7 0.3

<0, 0> 0.1 0.9

Know



Inference in Bayes Nets

Given a joint distribution represented by a Bayes Net, 
how can we calculate arbitrary probabilities over 
subsets of variables?

– P(X3=1 | X1=a, X17=0)
– P(X7=1)
– …

Unfortunately, in general, intractable (NP-complete)
Fortunately, for certain types of graphs, tractable
Fortunately, we can sometimes estimate them tractably



Prob. of joint assignment: easy 

Suppose we are interested in joint
assignment <S=s,A=a,K=k,E=e,H=h>

What is P(s,a,k,e,h)?

we’ll use p(a,b) as shorthand for p(A=a, B=b)



Prob. of joint assignment: easy 

Suppose we are interested in joint

assignment <S=s,A=a,K=k,E=e,H=h>

What is P(s,a,k,e,h)?

Efficient:  O(n) for n variables.
i.e., look up n values, multiply them

we’ll use p(a,b) as shorthand for p(A=a, B=b)



Marginal probabilities P(Xi):

• How do we calculate P(H=1) ?



Marginal probabilities P(Xi):

• How do we calculate P(H=1) ?

Inefficient:  O(n 2(n-1)) for n Boolean variables.



Only One Unobserved Variable:

How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?



Only One Unobserved Variable:

How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

Efficient:  O(2n) for n Boolean variables.



D-Separation

See recommended reading:  Bishop Chapter 8.1-8.2



D-Separation Rule to determine Cond. Indep.  
is based on three simple subgraphs:

A

C

B

A

C

B

A

C

B



prove A cond indep of B given C?
Ie., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(a|c) p(b|c)

Simple Network 1: Head to Tail A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)



prove A cond indep of B given C?
Ie., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(a|c) p(b|c)

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 1: Head to Tail 



prove A cond indep of B given C?
Ie., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(a|c) p(b|c)

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 1: Head to Tail 



prove A cond indep of B given C?
Ie., P(A=a,B=b|C=c) = P(A=a|C=c) P(B=b|C=c)

Which we’ll write p(a,b|c) = p(a|c) p(b|c)

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 1: Head to Tail 



prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

This is also provable.  [try it!!!]

Simple Network 2: Tail to Tail A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)



prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

This is NOT true!

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 3: Head to Head



prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

This is NOT true!

However, 

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 3: Head to Head



prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

This is NOT true!

However, 

Intuition:
“Explaining away”

A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

Simple Network 3: Head to Head

A: Earthquake

B: Burgler

C: Motion Alarm



Suppose we have three sets of random variables: X, Y and Z

X and Y are D-separated by Z (and therefore conditionally indep, given Z) 
iff every path from every variable in X to every variable in Y is blocked

A path from variable X to variable Y is blocked if it includes a node such 
that either (1) or (2) holds:

(1). arrows on the path meet either head-to-tail or tail-to-tail at a node in Z 

(2). arrows on the path meet head-to-head at a node, and neither that node, 
nor any of its descendants, is in Z

Z BAZ BA

C BA

D



X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every 
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that 
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

(2) Arrows on the path meet head-to-head at a node, and neither that node, nor any of 
its descendants, is in Z

X4 indep of X1 given X2?           

X4 indep of X1 given X3?           

X4 indep of X1 given {}?       

X4 indep of X1 given X5?           

X1

X4 X2

X3

X5



X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every 
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that 
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of 
its descendants, is in Z

X4 indep of X1 given X2?          YES (Condition 1)

X4 indep of X1 given X3?          NO

X4 indep of X1 given {}?            YES (Condition 2)

X4 indep of X1 given X5?          NO

X1

X4 X2

X3

X5



X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every 
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that 
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of 
its descendants, is in Z

X1 indep of X3 given X2?   

X3 indep of X1 given X2?    

X4 indep of X2 given {}?    

X1

X4 X2

X3

X5



X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every 
path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such that 
either (1) or (2)

(1) Arrows on the path meet either head-to-tail or tail-to-tail at a node from Z

(2) Arrows on the path meet head-to-head at a node, and neither the node, nor any of 
its descendants, is in Z

X1 indep of X3 given X2?   YES (1)

X3 indep of X1 given X2?   YES (1)

X4 indep of X2 given {}?   YES (2)

X1

X4 X2

X3

X5



Markov Blanket

from [Bishop, 8.2]

à Computational efficiency in many cases!



J

Why Markov Blanket is Useful for Inference

D E F

A B C

H K

G

?

let’s use shorthand P(a) to represent P(A=a)



J

Why Markov Blanket is Useful for Inference

D E F

A B C

H K

G

?

let’s use shorthand P(a) to represent P(A=a)

What is the Markov Blanket of H?

Poll:  Answer Question 2



J

Why Markov Blanket is Useful for Inference

D E F

A B C

H K

G

let’s use shorthand P(a) to represent P(A=a)



So far: exact inference methods, sometimes expensive

Next: generate data by sampling joint distribution,
then estimate probabilities (MLE) from counts over 
this data!

Bayes Net Inference by generating data samples



Generating a sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(S,A,K,E,H)?



Generating a sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(S,A,K,E,H)?

To generate a random sample for roots of network ( S or A ):
1. let θ =   P(S=1)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output S=1, else S=0

r<θ à S=1 r>θ à S=0

r=1r=0



Generating a sample from 
joint distribution: easy 

How can we generate random samples
drawn according to P(S,A,K,E,H)?

To generate a random sample for roots of network ( S or A ):
1. let θ =   P(S=1)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output S=1, else S=0

To generate a random sample for K, given S=s, A=a:
1. let θ =   P(K=1|S=s,A=a)       # look up from CPD
2. r = random number drawn uniformly between 0 and 1
3. if r<θ then output K=1, else K=0



Generating a sample from 
joint distribution: easy 

We can estimate probabilities like P(E=e) by 
generating many samples from joint distribution, then 
counting the fraction of samples (MLE) for which E=e

Similarly, for anything else we care about, calculate its maximum 
likelihood estimate from many generated examples
e.g., P(A=1|E=1, H=0)

à General method for estimating any probability term
à Alternative to exact closed form solutions
à Can be computationally expensive, depending on … 



Generating a sample from 
joint distribution: easy 

We can easily sample P(S,A,K,E,H)

We can use multiple samples to estimate P(S,A,K,E | H=1)

But if P(H=1) very small, most samples will have H=0   !

Can we directly sample P(S,A,K,E | H=1), forcing H to be 1?   "



Gibbs Sampling: 
Goal: Directly sample conditional distributions 

P(X1,…,Xn | Xn+1, ..., Xm)
Approach:
- start with the fixed observed Xn+1, ..., Xm  

plus arbitrary initial values for the unobserved X1
(0),…,Xn

(0)

- Iterate: for sample s=0 to a big number:

Eventually (after burn-in), each sample will constitute a sample of the true 
P(X1,…,Xn | Xn+1, ..., Xm)
* but often use every 100th sample, since iters not independent

X ~ P(X) means X is drawn randomly from P(X)



Gibbs Sampling: 
Goal: Directly sample conditional distributions 

P(X1,…,Xn | Xn+1, ..., Xm)
Approach:
- start with the fixed observed Xn+1, ..., Xm  

plus arbitrary initial values for the unobserved X1
(0),…,Xn

(0)

- Iterate: for sample s=0 to a big number:

Eventually (after burn-in), each sample will constitute a sample of the true 
P(X1,…,Xn | Xn+1, ..., Xm)
* but often use every 100th sample, since iters not independent

By the way…
How would we generate this sample?



Only One Unobserved Variable:

How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

Efficient:  O(2n) for n Boolean variables.



Gibbs Sampling: 
Goal: Directly sample conditional distributions 

P(X1,…,Xn | Xn+1, ..., Xm)
Approach:
- start with the fixed observed Xn+1, ..., Xm  

plus arbitrary initial values for the unobserved X1
(0),…,Xn

(0)

- iterate for s=0 to a big number:

Eventually (after burn-in), each sample will constitute a sample of the true 
P(X1,…,Xn | Xn+1, ..., Xm)
* but often use every 100th sample, since iterations not independent



Gibbs Sampling: 
Goal: Directly sample conditional distributions 

P(X1,…,Xn | Xn+1, ..., Xm)
Approach:
- start with the fixed observed Xn+1, ..., Xm  

plus arbitrary initial values for the unobserved X1
(0),…,Xn

(0)

- iterate for s=0 to a big number:

and need only the Markov Blanket at each step!

Gibbs is a special case of Markov Chain Monte Carlo methods



Inference in Bayes Nets
• Worst case is intractable (NP-complete)

• For certain cases, tractable exact solutions
– Assigning probability to full joint assignment of variable values
– Or if just one variable unobserved:  P(Xk| X1,X2, …)
– Other special cases

• Can often estimate probabilities by sampling the probability distribution: 
Monte Carlo methods
– Generate many samples, then use MLE estimates from samples
– Gibbs sampling (example of Markov Chain Monte Carlo)

• Many other approaches beyond this class
– Variational methods for tractable approximate solutions
– Junction tree, Belief propagation, …
– see Probabilistic Graphical Models course 10-708 (which Matt is teaching!)


