Machine Learning 10-601, 10-301

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

April 19, 2021

Today:

- Graphical models 3
 - Learning Bayesian Networks

Readings:

• Bishop chapter 8 <u>https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/Bishop-PRML-sample.pdf</u>

Bayesian Networks Definition

- A Bayes network represents the joint probability distribution over a collection of random variables
- A Bayes network is a directed acyclic graph and a set of Conditional Probability Distributions (CPD's)
- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i | Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Poll: Answer Question 1

What is the graphical model for a Naïve Bayes classifier?

Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

 $P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) =$

Learning of Bayes Nets

Four types of learning problems

- Graph structure may be known/unknown
- Variable values may be fully observed / partly unobserved
- 1. Easy case: learn parameters when graph structure is *known*, and training data is *fully observed*
- 2. Interesting case: graph known, data partly observed
- 3. Interesting case: graph unknown, data fully observed
- 4. Gruesome case: graph structure *unknown*, data *partly unobserved*

Easy: Graph Known, Fully Observed Data

• Example: Consider learning the parameter

 $\theta_{K=1|S=0,A=1} \equiv P(K=1|S=0,A=1)$

• Max Likelihood Estimate is $\theta \leftarrow \arg \max_{\theta} \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$

$$\textbf{m}^{\text{th}} \text{ training} \quad \textbf{\delta}(X) = 1 \text{ if } X \text{ is true} \\ \quad \textbf{0 otherwise}$$

S	А	K	Е	Н
1	0	1	1	0
0	1	0	0	1
0	1	1	0	0
0	0	0	1	0
1	1	1	1	1

Easy: Graph Known, Fully Observed Data

• Example: Consider learning the parameter

 $\theta_{K=1|S=0,A=1} \equiv P(K=1|S=0,A=1)$

Poll: Answer Question 2

What is the Maximum Likehood estimate of P(K=1|S=0,A=1)

S	А	K	Е	Н
1	0	1	1	0
0	1	0	0	1
0	1	1	0	0
0	0	0	1	0
1	1	1	1	1

Easy: Graph Known, Fully Observed Data

• Example: Consider learning the parameter

 $\theta_{K=1|S=0,A=1} \equiv P(K=1|S=0,A=1)$

• Max Likelihood Estimate is $\theta \leftarrow \arg \max_{\theta} \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$

$$\textbf{m}^{\text{th}} \text{ training} \quad \textbf{\delta}(X) = 1 \text{ if } X \text{ is true} \\ \quad \textbf{0 otherwise}$$

S	А	K	Е	Н
1	0	1	1	0
0	1	0	0	1
0	1	1	0	0
0	0	0	1	0
1	1	1	1	1

Partially Observed

S	Α	K	Е	Н
1	0	1	1	0
0	1	?	0	1
0	1	1	0	0
0	?	0	1	0
1	1	1	1	1

 $\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$
mth training
example $\delta(X) = 1$ if X is true
0 otherwise

Partially Observed

EM Approach

• Max Likelihood Estimate is $\theta \leftarrow \arg \max \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$

$$f$$

$$\delta(X) = 1 \text{ if } X \text{ is true}$$

$$0 \text{ otherwise}$$

• EM Estimate is:

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}$$

 $\theta_{K=1|S=0,A=1} =$

• Max Likelihood Estimate is $\theta \leftarrow \arg \max \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$
mth training
example
$$\delta(X) = 1 \text{ if } X \text{ is true}$$
0 otherwise

Partially Observed

EM Approach

EM Estimate

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}$$

 $\theta_{K=1|S=0,A=1} =$

Partially Observed

EM Approach

Max Likelihood Estimate is

 $\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} \delta(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} \delta(s_m = i, a_m = j)}$$

$$f$$

$$\textbf{m}^{\text{th}} \text{ training} \text{ example} \qquad \textbf{\delta}(\textbf{X}) = \textbf{1} \text{ if } \textbf{X} \text{ is true} \\ \textbf{0} \text{ otherwise}$$

• EM Estimate $\theta_{K=1|S=0,A=1} = \frac{0.6+1+0.2}{0.6+0.4+1+0.2}$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}$$

- Fractional examples
- Replace $\delta(X)$ by P(X)
- Replaces counts by expected values
- iterate!

EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm:

- Iterate until convergence:
 - E step: use current Bayes net parameters $\boldsymbol{\theta}$ to estimate unobserved Z values

• M step: use estimated values of Z to retrain Bayes net params $\boldsymbol{\theta}$

$$\theta_{K=1|S=i,A=j} = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}$$

Expected value = probability weighted average

$$E_{P(X)}[f(X)] = \sum_{x} P(X = x)f(x)$$

Expected value = probability weighted average

$$E_{P(X)}[f(X)] = \sum_{x} P(X = x)f(x)$$

Let X be all *observed* variable values (over all examples) Let Z be all *unobserved* variable values over all examples

$$\theta_{EM} \leftarrow \arg \max_{\theta} E_{P(Z|X,\theta)}[\log P(X, Z|\theta)]$$

$$E_{P(Z|X,\theta)}[\log P(X,Z|\theta)] = \sum_{z} P(Z=z|X,\theta) \log(P(X,Z=z|\theta))$$

* EM guaranteed to find local maximum

• EM seeks estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$$

- suppose for every example, observed X={S,A,E,H}, unobserved Z={K}
- how do we calculate $E_{P(Z|X,\theta)} \log P(X, Z|\theta)$ over our M training examples?

$$\log P(X, Z|\theta) = \sum_{m=1}^{M} \log P(s_m) + \log P(a_m) + \log P(k_m|s_m, a_m) + \log P(e_m|k_m) + \log P(h_m|k_m)$$

let's use a_m to represent value of A on the mth example

Study

Exam

Know

Attend

HW

How? Bayes net inference problem.

 $P(S_k = 1 | f_k a_k h_k n_k, \theta) =$

How? Bayes net inference problem.

$$P(S_{k} = 1 | f_{k}a_{k}h_{k}n_{k}, \theta) = \frac{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta)}{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta) + P(S_{k} = 0, f_{k}a_{k}h_{k}n_{k}|\theta)}$$

EM in general

- Unobserved data points can be any combination of variables sometimes observed, sometimes not
- You can build a MAP version instead of MLE version of EM
- Basis for many important algorithms
 - Hidden markov models
 - Unsupervised clustering

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

Using Unlabeled Data to Help Train Naïve Bayes Classifier

	Y	X1	X2	X3	X4	
\int	1	0	0	1	1	
	0	0	1	0	0	
	0	0	0	1	0	
\langle	?	0	1	1	0	
	?	0	1	0	1	
P	P(Y=1) T.T.P(*: (Y=1)					

 $\leq P(Y=k) \prod P(x_i | Y=k)$

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k the expected value of each unobserved value of variable Y $E_{P(Y|X_1\dots X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1)\prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j)\prod_i P(x_i(k)|y(k) = j)}$ kth training example M step: Calculate estimates similar to MLE, but replacing each count by its expected count

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k the expected value of each unobserved variable Y $E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$ kth training example M step: Calculate estimates similar to MLE, but replacing each count by its <u>expected count</u> $\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$

MLE would be: $\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$

- Inputs: Collections D^l of labeled documents and Dⁿ of unlabeled documents.
- Build an initial naive Bayes classifier, θ, from the labeled documents, D^l, only. Use maximum a posteriori parameter estimation to find θ = arg max_θ P(D|θ)P(θ) (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in l_c(θ|D;z) (the complete log probability of the labeled and unlabeled data
 - (E-step) Use the current classifier, θ̂, to estimate component membership of each unlabeled document, *i.e.*, the probability that each mixture component (and class) generated each document, P(c_j|d_i; θ̂) (see Equation 7).
 - (M-step) Re-estimate the classifier, θ̂, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find θ̂ = arg max_θ P(D|θ)P(θ) (see Equations 5 and 6).
- Output: A classifier, θ̂, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories

20 Newsgroups

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence	word w ranked by	DD	D
DD		D	DD
artificial	P(w Y=course)	lecture	lecture
inderstanding	/P(w Y ≠ course)	cc	cc
DDw		D^*	DD:DD
dist		DD:DD	due
identical		handout	D^*
rus		due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		DDam	hw
cognitive	Listen and Johnson	yurttas	exam
logic	Using one labeled	homework	problem
proving	example per class	kfoury	DDam
prolog		sec	postscript
knowledge		postscript	solution
buman		exam	quiz
epresentation		solution	chapter
field		assaf	ascii

What you should know about EM

- For learning from partly unobserved data
- MLE of $\theta = \arg \max_{\theta} \log P(data|\theta)$
- EM estimate: $\theta = \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$ Where X is observed part of data, Z is unobserved
- EM for training Bayes networks
- Can also develop MAP version of EM
- Can also derive your own EM algorithm for your own problem
 - write out expression for $E_{Z|X,\theta}[\log P(X, Z|\theta)]$
 - E step: for each training example X^{κ} , calculate $P(Z^{k} | X^{k}, \theta)$
 - M step: chose new θ to maximize $E_{Z|X,\theta}[\log P(X, Z|\theta)]$

Usupervised clustering

Just extreme case for EM with zero labeled examples...

Clustering

- Given set of data points, group them
- Unsupervised learning
- Which documents are similar? (or which patients, earthquakes, customers, faces, molecules, ...)

Mixture Distributions

Model joint $P(X_1 \dots X_n)$ as mixture of multiple distributions.

Use discrete-valued random var Z to indicate which distribution is being use for each random draw So

$$P(X_1 \dots X_n) = \sum_i P(Z = i) \quad P(X_1 \dots X_n | Z)$$

Mixture of *Gaussians*:

- Assume each data point X=<X1, ... Xn> is generated by one of several Gaussians, as follows:
- 1. randomly choose Gaussian i, according to P(Z=i)
- 2. randomly generate a data point <x1,x2 .. xn> according to N(μ_i , Σ_i)

Mixture of Gaussians

EM for Mixture of Gaussian Clustering

Let's simplify to make this easier:

1. assume $X = \langle X_1 \dots X_n \rangle$, and the X_i are conditionally independent given Z. $P(X|Z = i) = \prod N(X|I|I = 1)$

$$P(X|Z=j) = \prod_{i} N(X_i|\mu_{ji}, \sigma_{ji})$$

- 2. assume only 2 clusters (values of Z), and $\forall i, j, \sigma_{ji} = \sigma$ $P(\mathbf{X}) = \sum_{j=1}^{2} P(Z = j | \pi) \prod_{i} N(x_i | \mu_{ji}, \sigma)$ Z
- 3. Assume σ known, $\pi_l \dots \pi_{K_i} \mu_{li} \dots \mu_{Ki}$ unknown

Observed: $X = \langle X_1 \dots X_n \rangle$ Unobserved: Z

EM

Given observed variables X, unobserved Z Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$

Iterate until convergence:

- E Step: Calculate $P(Z(n)|X(n), \theta)$ for each example X(n). Use this to construct $Q(\theta'|\theta)$
- M Step: Replace current θ by $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

EM – E Step

Calculate $P(Z(n)|X(n),\theta)$ for each observed example X(n)

 $X(n) = \langle x_1(n), x_2(n), \dots x_T(n) \rangle.$

$$P(z(n) = k|x(n), \theta) = \frac{P(x(n)|z(n) = k, \theta) \quad P(z(n) = k|\theta)}{\sum_{j=0}^{1} p(x(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

$$P(z(n) = k|x(n), \theta) = \frac{\prod_i P(x_i(n)|z(n) = k, \theta)] \quad P(z(n) = k|\theta)}{\sum_{j=0}^1 \prod_i P(x_i(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

$$P(z(n) = k | x(n), \theta) = \frac{\prod_{i} N(x_i(n) | \mu_{k,i}, \sigma)] (\pi^k (1 - \pi)^{(1-k)})}{\sum_{j=0}^{1} [\prod_{i} N(x_i(n) | \mu_{j,i}, \sigma)] (\pi^j (1 - \pi)^{(1-j)})}$$

$$\begin{split} & \mathsf{EM} - \mathsf{M} \operatorname{Step} \\ & \mathsf{First consider update for } \pi \\ & \mathcal{Q}(\theta'|\theta) = E_{Z|X,\theta}[\log P(X,Z|\theta')] = E[\log P(X|Z,\theta') + \log P(Z|\theta')] \\ & \pi' \text{ has no influence} \\ & \pi \leftarrow \arg \max_{\pi'} E_{Z|X,\theta}[\log P(Z|\pi')] \\ & E_{Z|X,\theta}\left[\log P(Z|\pi')\right] = E_{Z|X,\theta}\left[\log\left(\pi'\sum_{n} z(n)(1-\pi')\sum_{n}(1-z(n))\right)\right] \\ & = E_{Z|X,\theta}\left[\left(\sum_{n} z(n)\right)\log\pi' + \left(\sum_{n} (1-z(n))\right)\log(1-\pi')\right] \\ & = \left(\sum_{n} E_{Z|X,\theta}[z(n)]\right)\log\pi' + \left(\sum_{n} E_{Z|X,\theta}[(1-z(n)])\right)\log(1-\pi') \\ & \frac{\partial E_{Z|X,\theta}[\log P(Z|\pi')]}{\partial\pi'} = \left(\sum_{n} E_{Z|X,\theta}[z(n)]\right)\frac{1}{\pi'} + \left(\sum_{n} E_{Z|X,\theta}[(1-z(n)])\right)\frac{(-1)}{1-\pi'} \\ & \pi \leftarrow \frac{\sum_{n=1}^{N} E[z(n)]}{\left(\sum_{n=1}^{n} E[z(n)]\right) + \left(\sum_{n=1}^{N} (1-E[z(n)])\right)} = \frac{1}{N}\sum_{n=1}^{N} E[z(n)] \end{split}$$

Compare above to MLE if Z were observable:

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} \delta(z(n) = j) \quad x_i(n)}{\sum_{n=1}^{N} \delta(z(n) = j)}$$

EM – putting it together

Given observed variables X, unobserved Z Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$

Iterate until convergence:

- E Step: For each observed example X(n), calculate $P(Z(n)|X(n),\theta)$ $P(z(n) = k \mid x(n),\theta) = \frac{\left[\prod_{i} N(x_{i}(n)|\mu_{k,i},\sigma)\right] \quad (\pi^{k}(1-\pi)^{(1-k)})}{\sum_{j=0}^{1} \left[\prod_{i} N(x_{i}(n)|\mu_{j,i},\sigma)\right] \quad (\pi^{j}(1-\pi)^{(1-j)})}$
- M Step: Update $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

$$\underbrace{\begin{pmatrix} \mathcal{L} \in \mathcal{N} \\ \pi \leftarrow 1 \\ \mathcal{N} \\ n=1 \end{pmatrix}}_{N = 1}^{N} E[z(n)] \qquad \qquad \mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \quad x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$