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Today:

• Graphical models 3
• Learning Bayesian 

Networks

Readings:

• Bishop chapter 8
https://www.microsoft.com/en-
us/research/wp-
content/uploads/2016/05/Bishop-
PRML-sample.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/Bishop-PRML-sample.pdf


Bayesian Networks Definition

A Bayes network represents the joint probability distribution 
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 
Conditional Probability Distributions (CPD’s)

• Each node denotes a random variable
• Edges denote dependencies
• For each node Xi its CPD defines P(Xi | Pa(Xi))
• The joint distribution over all variables is defined to be

Pa(X) = immediate parents of X in the graph



Poll:  Answer Question 1

What is the graphical model for a 
Naïve Bayes classifier?



Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, 
given the present

St-2 St-1 St St+1 St+2

Ot-2 Ot-1 Ot Ot+1 Ot+2

Unobserved 
state:

Observed 
output:



Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, 
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Learning of Bayes Nets
Four types of learning problems

– Graph structure may be known/unknown
– Variable values may be fully observed / partly unobserved

1. Easy case: learn parameters when graph structure is 
known, and training data is fully observed

2. Interesting case: graph known, data partly observed

3. Interesting case: graph unknown, data fully observed

4. Gruesome case: graph structure unknown, data partly 
unobserved



• Example: Consider learning the 

parameter

• Max Likelihood Estimate is

mth training 

example

δ(X) = 1 if X is true

0 otherwise

let’s use am to represent value of A on the mth example

S A K E H

1 0 1 1 0

0 1 0 0 1

0 1 1 0 0

0 0 0 1 0

1 1 1 1 1

Easy: Graph Known, Fully Observed Data
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Poll:  Answer Question 2

What is the Maximum Likehood estimate  

of P(K=1|S=0,A=1)
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• Max Likelihood Estimate is

let’s use am to represent value of A on the mth example

mth training 
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0 otherwise
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Fully Observed

S A K E H
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0 ? 0 1 0

1 1 1 1 1

Partially Observed



• Max Likelihood Estimate is

let’s use am to represent value of A on the mth example

S A K E H

1 0 1 1 0

0 1 0 0 1

0 1 1 0 0

0 0 0 1 0
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Fully Observed EM Approach

S A K E H
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0 1 ? 0 1

0 1 1 0 0

0 ? 0 1 0

1 1 1 1 1

Pr S A K E H
1.0 1 0 1 1 0
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0.4 0 1 0 0 1
1.0 0 1 1 0 0
0.2 0 1 0 1 0
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1.0 1 1 1 1 1
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δ(X) = 1 if X is true
0 otherwise

Partially Observed

• EM Estimate is:
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• EM Estimate

• Fractional examples
• Replace δ(X) by P(X)
• Replaces counts by expected values
• iterate!



EM algorithm

• Let X be all observed variable values (over all examples)
• Let Z be all unobserved variable values  

EM algorithm: 

• Iterate until convergence:

• E step: use current Bayes net parameters θ to estimate unobserved Z values

• M step: use estimated values of Z to retrain Bayes net params θ



Expected value = 
probability weighted average



Expected value = 
probability weighted average

Let X be all observed variable values (over all examples)
Let Z be all unobserved variable values over all examples

* EM guaranteed to find local maximum



• EM seeks estimate:

• suppose for every example, observed X={S,A,E,H}, unobserved Z={K}

• how do we calculate                                    over our M training examples? 

mth training 
example

This corresponds to splitting each training example into 
two probabilistically weighted examples

let’s use am to represent value of A on the mth example



E Step: Use X, q, to Calculate P(Z|X,q)

How?  Bayes net inference problem.

observed X={F,A,H,N}, 
unobserved Z={S}

let’s use ak to represent value of A on the kth example

F A

S

H N



E Step: Use X, q, to Calculate P(Z|X,q)

How?  Bayes net inference problem.

observed X={F,A,H,N}, 
unobserved Z={S}

let’s use ak to represent value of A on the kth example

F A

S

H N



EM in general

• Unobserved data points can be any combination 
of variables sometimes observed , sometimes not

• You can build a MAP version instead of MLE 
version of EM

• Basis for many important algorithms
• Hidden markov models
• Unsupervised clustering



Using Unlabeled Data to Help Train 
Naïve Bayes Classifier

Y

X1 X4X3X2

Y X1 X2 X3 X4
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Learn P(Y|X)



Using Unlabeled Data to Help Train 
Naïve Bayes Classifier

Y

X1 X4X3X2

Y X1 X2 X3 X4
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Learn P(Y|X)



EM and estimating  

Given observed set X, unobserved set Y of boolean values

E step:  Calculate for each training example, k 

the expected value of each unobserved value of variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

kth training example



EM and estimating  

Given observed set X, unobserved set Y of boolean values

E step:  Calculate for each training example, k 

the expected value of each unobserved variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

MLE would be:

kth training example



From [Nigam et al., 2000]



Experimental Evaluation

• Newsgroup postings 
– 20 newsgroups, 1000/group

• Web page classification 
– student, faculty, course, project
– 4199 web pages

• Reuters newswire articles 
– 12,902 articles
– 90 topics categories



20 Newsgroups



Using one labeled 
example per class

word w ranked by 
P(w|Y=course) 
/P(w|Y ≠ course)



• For learning from partly unobserved data
• MLE of q = 
• EM estimate: q = 

Where X is observed part of data, Z is unobserved

• EM for training Bayes networks
• Can also develop MAP version of EM
• Can also derive your own EM algorithm for your own 

problem
– write out expression for
– E step: for each training example Xk, calculate P(Zk | Xk, θ)
– M step: chose new θ to maximize                            

What you should know about EM



Usupervised clustering

Just extreme case for EM with 
zero labeled examples…



Clustering
• Given set of data points, group them
• Unsupervised learning
• Which documents are similar? (or which patients, 

earthquakes, customers, faces, molecules, …)



Mixture Distributions
Model joint                     as mixture of multiple 

distributions.
Use discrete-valued random var Z to indicate which 

distribution is being use for each random draw
So

Mixture of Gaussians:
• Assume each data point X=<X1, … Xn> is generated 

by one of several Gaussians, as follows:
1. randomly choose Gaussian i, according to P(Z=i)
2. randomly generate a data point <x1,x2 .. xn> 

according to N(μi, Σi)



Mixture of Gaussians



EM for Mixture of Gaussian Clustering

Let’s simplify to make this easier:   
1. assume X=<X1 ... Xn>, and the Xi are conditionally independent 

given Z.  

2. assume only 2 clusters (values of Z), and

3. Assume s known, p1 … pK, µ1i …µKi unknown

Observed: X=<X1 ... Xn>

Unobserved: Z

Z

X1 X4X3X2



EM

Given  observed variables X, unobserved Z  

Define

where 

Iterate until convergence:

• E Step: Calculate P(Z(n)|X(n),q) for each example X(n). 
Use this to construct 

• M Step: Replace current q by 

Z

X1 X4X3X2



EM – E Step

Calculate P(Z(n)|X(n),q) for each observed example X(n)

X(n)=<x1(n), x2(n), … xT(n)>.

Z

X1 X4X3X2



EM – M Step Z

X1 X4X3X2

First consider update for p

p’ has no influence

z=1 for nth 
example



EM – M Step Z

X1 X4X3X2

Now consider update for µji

µji’ has no influence

………

Compare above to 
MLE if Z were 
observable:



EM – putting it together

Given  observed variables X, unobserved Z  

Define

where 

Iterate until convergence:

• E Step: For each observed example X(n), calculate P(Z(n)|X(n),q)

• M Step: Update

Z

X1 X4X3X2


