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Today:

• Learning graphical models
1. EM: learning from 

partially observed data
2. Mixture models, 

clustering
3. Structure learning

Readings:

• Bishop chapter 9-9.2 mixture models
• Kevin Murphy chapter 11.4 (optional)

Bishop: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Patt
ern-Recognition-and-Machine-Learning-2006.pdf  



EM : Learning from Partially Observed Training Data



EM algorithm

• Let X be all observed variable values (over all examples)
• Let Z be all unobserved variable values  

EM algorithm: 

• Iterate until convergence:
• E step: use current Bayes net parameters θ to estimate unobserved Z values

• M step: use estimated values of Z to retrain Bayes net params θ
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0 1 1 0 0

0 ? 0 1 0

1 1 1 1 1

mth training example
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wait – how do we compute 
these probabilities??



Only One Unobserved Variable:

How do we calculate P(K=1 | S=s, A=a, E=e, H=h) ?

where:

Efficient:  O(2n) for n Boolean variables.
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EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data

Given  observed training feature values X, unobserved Z, from all examples

Iterate until convergence:

• E Step: Use X and current q to calculate P(Z|X,q)

• M Step: Replace current q by 

Guaranteed to find q that is local maximum of



Using Unlabeled Data to Help Train 
Naïve Bayes Classifier

Y

X1 X4X3X2

Y X1 X2 X3 X4
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Learn P(Y|X)



E step:  Calculate for each training example, k 

the expected value of each unobserved value of variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

kth training example

Given observed set X, unobserved set Y of values
(only missing values are labels Y for some examples)

EM for semi-supervised Naïve Bayes 



E step:  Calculate for each training example, k 

the expected value of each unobserved value of variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

kth training example Why is expected value of Boolean-valued Y just P(Y=1)?

Answer: the definition of expected value:

Given observed set X, unobserved set Y of values
(only missing values are labels Y for some examples)

EM for semi-supervised Naïve Bayes 



EM for semi-supervised Naïve Bayes 
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E step:  Calculate for each training example, k 

the expected value of each unobserved variable Y

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count

MLE would be:

kth training example

Given observed set X, unobserved set Y of values
(only missing values are labels Y for some examples)



20 Newsgroups



Y

X1 X4X3X2

Y X1 X2 X3 X4

? 0 0 1 1
? 0 1 0 0
? 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

Can we still use EM to learn P(Y,X1,X2,X3,X4)?
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X1 X4X3X2

Y X1 X2 X3 X4
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Question: What if our data provides no Y labels, 

but we believe P(Y,X1,X2,X3,X4) is

defined by this Naïve Bayes net structure?

à Unsupervised clustering

à Y is the unobserved indicator of which cluster each X belongs to.

P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster

à Or, if we want to consider more clusters, we define Y to have more

values (i.e., Y in {0,1,2,…,N} )

Unobserved cluster label to be learned
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but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering
à Y is the unobserved indicator of which cluster each X belongs to.

P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster 

Suppose we assume P(X1,X2,X3,X4) is a mixture of two distributions (two 
clusters).  Then:

P(X1,X2,X3,X4) =  
P(Y=1) P(X1,X2,X3,X4 | Y=1) 

+ P(Y=0) P(X1,X2,X3,X4 | Y=0)

Unobserved cluster label to be learned



Y

X1 X4X3X2

Y X1 X2 X3 X4

? 0 0 1 1

? 0 1 0 0

? 0 0 1 0

? 0 1 1 0

? 0 1 0 1

Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering
à Y is the unobserved indicator of which cluster each X belongs to.

P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster 

Suppose we assume P(X1,X2,X3,X4) is a mixture of two distributions (two 
clusters).  Then:

P(X1,X2,X3,X4) =  
P(Y=1) P(X1,X2,X3,X4 | Y=1) 

+ P(Y=0) P(X1,X2,X3,X4 | Y=0)

Unobserved cluster label to be learned

This form is 
called a 
“mixture 
distribution”
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X1 X4X3X2
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Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering : EM

EM
à

Pr Y X1 X2 X3 X4
0.8 1 0 0 1 1
0.2 0 0 0 1 1
0.3 1 0 1 0 0
0.7 0 0 1 0 0
0.4 1 0 0 1 0
0.6 0 0 0 1 0
0.7 1 0 1 1 0
0.3 0 0 1 1 0
0.6 1 0 1 0 1
0.4 0 0 1 0 1

Learned probabilistic cluster label



Y

X1 X4X3X2

Y X1 X2 X3 X4

? 0.1 7.2 3.1 1.4

? 9.9 2.1 5.0 0.2

? 8.0 0.7 5.1 0.9

? 1.1 6.2 2.9 2.1

? 1.4 8.3 2.7 1.8

Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering : EM

ß What if real-valued Xi’s?
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Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering : EM
What if real-valued Xi’s?
Need different form of P(Xi|Y)
e.g., Gaussian

X à

P
(X

) à
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Question: What if our data provides no Y labels, 
but we believe P(Y,X1,X2,X3,X4) is
defined by this Naïve Bayes net structure?

à Unsupervised clustering : EM

EM
à

Pr Y X1 X2 X3 X4

0.8 1 0.1 7.2 3.1 1.4

0.2 0 0.1 7.2 3.1 1.4

0.3 1 9.9 2.1 5.0 0.2

0.7 0 9.9 2.1 5.0 0.2

0.4 1 8.0 0.7 5.1 0.9

0.6 0 8.0 0.7 5.1 0.9

0.7 1 1.1 6.2 2.9 2.1

0.3 0 1.1 6.2 2.9 2.1

0.6 1 1.4 8.3 2.7 1.8

0.4 0 1.4 8.3 2.7 1.8

X

P
(X

) 



EM for Mixture of Gaussians Clustering
Let’s simplify to make this easier:   
1. assume X=<X1 ... Xn>, and the Xi are conditionally independent 

given Z.  (the Naïve Bayes assumption).

2. assume only 2 clusters (Z in {0,1}), and

3. Assume s known, p1 … pK, µ1i …µKi unknown

Observed: X=<X1 ... Xn>
Unobserved: Z

Z

X1 X4X3X2



EM for Gaussian mixture model clustering

Given observed real-valued variables Xi, unobserved Z  

where 

Iterate until convergence:

• E Step: For each observed example X(n), calculate P(Z(n) | X(n), q )

• M Step: Update

Z

X1 X4X3X2



Goal: Learn mixture distribution, interpreting Z as cluster label

Learn P(X1, X2| q) =
P(Z=1| q) P(X1, X2| Z=1,q)

+  P(Z=0| q) P(X1, X2| Z=0,q)

Observed data X1, X2, unknown cluster assignment Z
Z X1 X2

? 0.9 -1.3

? -1.5 1.2

? -0.4 -0.6

… … …
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Goal: Learn mixture distribution, interpreting Z as cluster label
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Final P(Z)=[0.4893 0.5107]



Example:  Mixture of Three (Spherical) Gaussians

EM
à



10 iterations 20 iterations 60 iterations

EM assuming mixture of 3 Gaussian components : no conditional indep assumptions, so non-spherical Gaussians
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10 iterations 20 iterations 60 iterations

2 components 6 components 10 components

EM assuming mixture of 3 Gaussian components : no conditional indep assumptions, so non-spherical Gaussians



10 iterations 20 iterations 60 iterations

2 components 6 components 10 components

How should we choose the number of clusters?

EM assuming mixture of 3 Gaussian components : no conditional indep assumptions, so non-spherical Gaussians



How to choose number k of clusters?

• We can try multiple values of k, evaluating each by the 

data likelihood P(Data | k component mixture model)

• Note if we do this on the training data, the k that 

maximizes

P(trainData | k component mixture model)

will be k = number of training examples!

• Use held-out test data to chose k

P(testData | k component mixture model)



[courtesy Mohand Saïd Allili]



• Another application of EM to learn from partially observed data
• Unobserved variable: cluster label
• Based on Bayes net that models mixture distribution
• Can use this for both discrete-valued, real-valued Xi

• Doesn’t answer the question of how many clusters to assume
– But cross validation can reveal which choice is best on held-out data

What you should know about EM mixture model clustering



Learning Bayes Net Structure



How can we learn Bayes Net graph structure?
In general case, open problem
• can require lots of data (else high risk of overfitting)
• can use Bayesian priors, or other kinds of prior 

assumptions about graph structure to constrain 
search

One key result:
• Chow-Liu algorithm: finds “best” tree-structured 

network  
• What’s best?

– suppose P(X) is true distribution, T(X) is distribution of our 
tree-structured network, where X = <X1, … Xn> 

– Chow-Liu minimizes Kullback-Leibler divergence:



Kullback-Leibler Divergence

• KL(P(X) || T(X)) is a measure of the difference 
between probability distributions P(X) and T(X)

• It is assymetric, always greater or equal to 0
• It is 0 iff P(X)=T(X)



Chow-Liu Algorithm
Key result:  To minimize KL(P || T) over possible tree 

networks T approximating true P, it suffices to find the tree 
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B: 

This works because for tree networks with nodes



Chow-Liu Algorithm
1. for each pair of variables A,B, use training data to 

estimate P(A,B),  P(A),  and P(B)

2.   for each pair A, B calculate mutual information

3.  calculate the maximum spanning tree over the set of
variables, using edge weights I(A,B)
(given N vars, this costs only O(N2) time)

4.  add arrows to edges to form a directed-acyclic graph

5.  learn the CPD’s for this graph



Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/

1/

[courtesy A. Singh, C. Guestrin]



Bayes Nets – What You Should Know
• Representation

– Bayes nets represent joint distribution as a DAG + 
Conditional Distributions

– D-separation lets us decode conditional independence 
assumptions

• Inference
– NP-hard in general
– For some graphs, closed form inference is feasible
– Approximate methods too, e.g., Monte Carlo methods, …

• Learning
– Easy for known graph, fully observed data (MLE’s, MAP est.)
– EM for partly observed data, known graph
– Learning graph structure: Chow-Liu for tree-structured 

networks
– Hardest when graph unknown, data incompletely observed


