Machine Learning 10-601, 10-301

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

April 21, 2021

Today:

- Learning graphical models
 - 1. EM: learning from partially observed data
 - 2. Mixture models, clustering
 - 3. Structure learning

Readings:

- Bishop chapter 9-9.2 mixture models
- Kevin Murphy chapter 11.4 (optional)

Bishop: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Patt ern-Recognition-and-Machine-Learning-2006.pdf EM : Learning from Partially Observed Training Data

EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm:

- Iterate until convergence:
 - **E step**: use current Bayes net parameters θ to estimate <u>un</u>observed Z values

• **M step**: use estimated values of Z to retrain Bayes net params θ

$$\theta_{K=1|S=i,A=j} = P(K=1|S=i,A=j) = \frac{\sum_{m=1}^{M} P_{\theta}(s_m=i,a_m=j,k_m=1)}{\sum_{m=1}^{M} P_{\theta}(s_m=i,a_m=j)}$$

mth training example

EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm: • Iterate until convergence: • E step: use current Bayes net parar	wait – how do we compute these probabilities??
S A K E H 1 0 1 1 0 0 1 ? 0 1 0 1 ? 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K E H 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 1
• M step : use estimated values of Z to $\theta_{K=1 S=i,A=j} = P(K=1 S=i,A)$	o retrain Bayes net params θ $I = j) = \frac{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j, k_m = 1)}{\sum_{m=1}^{M} P_{\theta}(s_m = i, a_m = j)}$

mth training example

Only One Unobserved Variable:

How do we calculate P(K=1 | S=s, A=a, E=e, H=h)?

$$P(K = 1 | S = s, A = a, E = e, H = h) = \frac{P(S = s, A = a, K = 1, E = e, H = h)}{P(S = s, A = a, E = e, H = h)}$$

$$= \frac{P(S = s, A = a, K = 1, E = e, H = h)}{P(S = s, A = a, K = 1, E = e, H = h) + P(S = s, A = a, K = 0, E = e, H = h)}$$

where:

P(S = s, A = a, K = k, E = e, H = h) = P(S = s)P(A = a)P(K = k | S = s, A = a)P(E = e | K = k)P(H = 1 | K = k)

Efficient: O(2n) for n Boolean variables.

EM algorithm

- Let X be all *observed* variable values (over all examples)
- Let Z be all *unobserved* variable values

EM algorithm:

- Iterate until convergence:
 - **E step**: use current Bayes net parameters θ to estimate <u>un</u>observed Z values

• **M step**: use estimated values of Z to retrain Bayes net params θ

$$\theta_{K=1|S=i,A=j} = P(K=1|S=i,A=j) = \frac{\sum_{m=1}^{M} P_{\theta}(s_m=i,a_m=j,k_m=1)}{\sum_{m=1}^{M} P_{\theta}(s_m=i,a_m=j)}$$

mth training example

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data Given observed training feature values X, unobserved Z, from all examples

Study

Exam

Know

Attend

HW

```
Iterate until convergence:
```

- E Step: Use X and current θ to calculate P(Z|X, θ)
- M Step: Replace current $\boldsymbol{\theta}$ by

$$\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$

Guaranteed to find θ that is local maximum of $E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

EM for semi-supervised Naïve Bayes

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

Given observed set X, unobserved set Y of values (only missing values are labels Y for some examples)

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$
kth training example
M step: Calculate estimates similar to MLE, but
replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$$

MLE would be: $\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$

Y X, X, X,

20 Newsgroups

Can we still use EM to learn P(Y,X1,X2,X3,X4)?

Y	X1	X2	X3	X4
?	0	0	1	1
?	0	1	0	0
?	0	0	1	0
?	0	1	1	0
?	0	1	0	1

- \rightarrow Unsupervised clustering
- \rightarrow Y is the unobserved indicator of which cluster each X belongs to. P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster
- → Or, if we want to consider more clusters, we define Y to have more values (i.e., Y in {0,1,2,...,N})

X2 X3 Y X1 X4 ? 0 0 1 1 ? 0 1 $\mathbf{0}$ 0 ? 0 1 0 0 ? 0 0 1 1 ? 0 1 0 1

Unobserved cluster label to be learned

- \rightarrow Unsupervised clustering
- → Y is the unobserved indicator of which cluster each X belongs to. P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster

Suppose we assume P(X1,X2,X3,X4) is a mixture of <u>two</u> distributions (two clusters). Then:

Unobserved cluster label to be learned

Y	X1	X2	X3	X4
?	0	0	1	1
?	0	1	0	0
?	0	0	1	0
?	0	1	1	0
?	0	1	0	1

 \rightarrow Unsupervised clustering

P

→ Y is the unobserved indicator of which cluster each X belongs to. P(Y=1|X), P(Y=0|X) indicate the prob. that X belongs to each cluster

Suppose we assume P(X1,X2,X3,X4) is a mixture of <u>two</u> distributions (two clusters). Then:

This form is called a "mixture distribution"

Unobserved cluster label to be learned

			-	
Y	X1	X2	X3	X4
?	0	0	1	1
?	0	1	0	0
?	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM

 \rightarrow

 \rightarrow Unsupervised clustering : EM

Y	X1	X2	X3	X4
?	0	0	1	1
?	0	1	0	0
?	0	0	1	0
?	0	1	1	0
?	0	1	0	1

L	Learned probabilistic cluster label						
	\checkmark						
	Pr	Y	X1	X2	X3	X4	
	0.8	1	0	0	1	1	
	0.2	0	0	0	1	1	
	0.3	1	0	1	0	0	
	0.7	0	0	1	0	0	
	0.4	1	0	0	1	0	
	0.6	0	0	0	1	0	
	0.7	1	0	1	1	0	
	0.3	0	0	1	1	0	
	0.6	1	0	1	0	1	
	0.4	0	0	1	0	1	

 \rightarrow Unsupervised clustering : EM

Y	X1	X2	X3	X4
?	0.1	7.2	3.1	1.4
?	9.9	2.1	5.0	0.2
?	8.0	0.7	5.1	0.9
?	1.1	6.2	2.9	2.1
?	1.4	8.3	2.7	1.8

 \leftarrow What if real-valued X_i's?

 \rightarrow Unsupervised clustering : EM

Y	X1	X2	X3	X4
?	0.1	7.2	3.1	1.4
?	9.9	2.1	5.0	0.2
?	8.0	0.7	5.1	0.9
?	1.1	6.2	2.9	2.1
?	1.4	8.3	2.7	1.8

What if real-valued X_i's? Need different form of P(X_i|Y) e.g., Gaussian

$$P(X_i = x | Y = y) = \frac{1}{\sqrt{2\pi\sigma_{iy}^2}} \exp\left(-\frac{1}{2\sigma_{iy}^2}(x - \mu_{iy})^2\right)$$

EM

 \rightarrow

 \rightarrow Unsupervised clustering : EM

Y	X1	X2	X3	X4
?	0.1	7.2	3.1	1.4
?	9.9	2.1	5.0	0.2
?	8.0	0.7	5.1	0.9
?	1.1	6.2	2.9	2.1
?	1.4	8.3	2.7	1.8

Pr	Y	X1	X2	X3	X4
0.8	1	0.1	7.2	3.1	1.4
0.2	0	0.1	7.2	3.1	1.4
0.3	1	9.9	2.1	5.0	0.2
0.7	0	9.9	2.1	5.0	0.2
0.4	1	8.0	0.7	5.1	0.9
0.6	0	8.0	0.7	5.1	0.9
0.7	1	1.1	6.2	2.9	2.1
0.3	0	1.1	6.2	2.9	2.1
0.6	1	1.4	8.3	2.7	1.8
0.4	0	1.4	8.3	2.7	1.8

EM for Mixture of Gaussians Clustering

Let's simplify to make this easier:

- 1. assume $X = \langle X_1 ... X_n \rangle$, and the X_i are conditionally independent given Z. (the Naïve Bayes assumption). $P(X|Z = j) = \prod_i N(X_i|\mu_{ji}, \sigma_{ji})$
- 2. assume only 2 clusters (Z in {0,1}), and $\forall i, j, \sigma_{ji} = \sigma_{2}$

$$P(\mathbf{X}) = \sum_{j=1}^{n} P(Z = j | \pi) \prod_{i} N(x_{i} | \mu_{ji}, \sigma)$$
3. Assume σ known, $\pi_{I} \dots \pi_{K_{i}} \mu_{Ii} \dots \mu_{Ki}$ unknown
Observed: $X = \langle X_{I} \dots X_{n} \rangle$
Unobserved: Z

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X_{4}$$

EM for Gaussian mixture model clustering Given observed real-valued variables X_i, unobserved Z where $\theta = \langle \pi, \mu_{ji} \rangle$ $\pi \equiv P(Z = 1)$ $\mu_{ji} \equiv$ mean of Gaussian for $P(X_i | Z = j)$ X₁ X₂ X₃ X₄

Iterate until convergence:

- E Step: For each observed example X(n), calculate P(Z(n) | X(n), θ) $P(z(n) = k | x(n), \theta) = \frac{\left[\prod_{i} N(x_i(n)|\mu_{k,i}, \sigma)\right] (\pi^k (1-\pi)^{(1-k)})}{\sum_{i=0}^{1} \left[\prod_{i} N(x_i(n)|\mu_{j,i}, \sigma)\right] (\pi^j (1-\pi)^{(1-j)})}$
- M Step: Update

$$\underbrace{\left(\begin{array}{c} \mathcal{L}^{(j)} \\ \pi \leftarrow \end{array}\right)}_{\mathcal{I}} \leftarrow \frac{1}{N} \sum_{n=1}^{N} E[z(n)] \qquad \mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \quad x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

Z	2	X1	X2
	?	0.9	-1.3
	?	-1.5	1.2
	?	-0.4	-0.6

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

Choose any initial θ

- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

Z	X1	X2
?	0.9	-1.3
?	-1.5	1.2
?	-0.4	-0.6

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

	Z	X1	X2
	?	0.9	-1.3
	?	-1.5	1.2
	?	-0.4	-0.6
E-Step			

Probability	Z	X1	X2
0.8	1	0.9	-1.3
0.2	0	0.9	-1.3
0.3	1	-1.5	1.2
0.7	0	-1.5	1.2
0.6	1	-0.4	-0.6
0.4	0	-0.4	-0.6

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

Probability	Z	X1	X2
0.8	1	0.9	-1.3
0.2	0	0.9	-1.3
0.3	1	-1.5	1.2
0.7	0	-1.5	1.2
0.6	1	-0.4	-0.6
0.4	0	-0.4	-0.6

M-Step
$$\theta_{Z=1}$$

$$\theta_{Z=1} \equiv P(Z=1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} P_{Z|X,\theta}(Z_n=1)$$
$$= \frac{0.8 + 0.3 + 0.6 + \dots}{3 + \dots}$$

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

 $\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

Probability	Z	X1	X2
0.8	1	0.9	-1.3
0.2	0	0.9	-1.3
0.3	1	-1.5	1.2
0.7	0	-1.5	1.2
0.6	1	-0.4	-0.6
0.4	0	-0.4	-0.6

M-Step
$$\theta_{Z=1}$$

$$\theta_{Z=1} \equiv P(Z=1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} P_{Z|X,\theta}(Z_n=1)$$

$$= \frac{0.8 + 0.3 + 0.6 + \dots}{3 + \dots}$$

note if Z observed, we would have

$$\theta_{Z=1} \equiv P(Z=1) \leftarrow \frac{1}{N} \sum_{n=1}^{N} Z$$

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

 $\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

Probability	Z	X1	X2
0.8	1	0.9	-1.3
0.2	0	0.9	-1.3
0.3	1	-1.5	1.2
0.7	0	-1.5	1.2
0.6	1	-0.4	-0.6
0.4	0	-0.4	-0.6

M-Step
$$\mu_{X_i|Z=j}$$

$$\mu_{X_i|Z=j} \leftarrow \frac{\sum_{n=1}^N P(Z_n=j)X_{i,n}}{\sum_{n=1}^N P(Z_n=j)}$$

e.g.,

$$\mu_{X_2|Z=1} = \frac{0.8(-1.3) + 0.3(1.2) + 0.6(-0.6) + \dots}{0.8 + 0.3 + 0.6 + \dots}$$

Goal: Learn mixture distribution, interpreting Z as cluster label

Learn $P(X_1, X_2 | \theta) =$ $P(Z=1 | \theta) P(X_1, X_2 | Z=1, \theta)$ $+ P(Z=0 | \theta) P(X_1, X_2 | Z=0, \theta)$

EM Algorithm

- 1. Choose any initial θ
- 2. Iterate until convergence:
 - E Step: Use X and current θ to calculate P(Z|X,θ)
 - M Step: Replace current θ by

 $\theta \leftarrow \arg \max_{\theta'} E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

Probability	Z	X1	X2
0.8	1	0.9	-1.3
0.2	0	0.9	-1.3
0.3	1	-1.5	1.2
0.7	0	-1.5	1.2
0.6	1	-0.4	-0.6
0.4	0	-0.4	-0.6

M-Step
$$\mu_{X_i|Z=j}$$

$$\mu_{X_i|Z=j} \leftarrow \frac{\sum_{n=1}^N P(Z_n=j)X_{i,n}}{\sum_{n=1}^N P(Z_n=j)}$$

e.g.,

$$\mu_{X_2|Z=1} = \frac{0.8(-1.3) + 0.3(1.2) + 0.6(-0.6) + \dots}{0.8 + 0.3 + 0.6 + \dots}$$

Final P(Z)=[0.4893 0.5107]

Example: Mixture of Three (Spherical) Gaussians

ΕM

 \rightarrow

2 components

2 components

6 components

10 components

How should we choose the number of clusters?

2 components

6 components

10 components

How to choose number k of clusters?

- We can try multiple values of k, evaluating each by the data likelihood P(Data | k component mixture model)
- Note if we do this on the training data, the k that maximizes
 P(trainData | k component mixture model)
 will be k = number of training examples!
- Use held-out test data to chose k
 P(testData | k component mixture model)

Applications of GMM in computer vision

1- Image segmentation:

$$X = (R, G, B)^T$$

[courtesy Mohand Saïd Allili]

What you should know about EM mixture model clustering

- Another application of EM to learn from partially observed data
- Unobserved variable: cluster label
- Based on Bayes net that models mixture distribution
- Can use this for both discrete-valued, real-valued X_i
- Doesn't answer the question of *how many* clusters to assume
 - But cross validation can reveal which choice is best on held-out data

Learning Bayes Net Structure

How can we learn Bayes Net graph structure?

In general case, open problem

- can require lots of data (else high risk of overfitting)
- can use Bayesian priors, or other kinds of prior assumptions about graph structure to constrain search

One key result:

- Chow-Liu algorithm: finds "best" tree-structured network
- What's best?
 - suppose P(X) is true distribution, T(X) is distribution of our tree-structured network, where X = <X₁, ... X_n>
 - Chow-Liu minimizes Kullback-Leibler divergence:

$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

Kullback-Leibler Divergence

 KL(P(X) || T(X)) is a measure of the difference between probability distributions P(X) and T(X)

$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

- It is assymetric, always greater or equal to 0
- It is 0 iff P(X)=T(X)

Chow-Liu Algorithm

<u>Key result</u>: To minimize KL(P || T) over possible tree networks T approximating true P, it suffices to find the tree network T that maximizes the sum of mutual informations over its edges

Mutual information for an edge between variable A and B:

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

This works because for tree networks with nodes $\mathbf{X} \equiv \langle X_1 \dots X_n \rangle$

$$KL(P(\mathbf{X}) \parallel T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$
$$= -\sum_{i} I(X_i, Pa(X_i)) + \sum_{i} H(X_i) - H(X_1 \dots X_n)$$

Chow-Liu Algorithm

- 1. for each pair of variables A,B, use training data to estimate P(A,B), P(A), and P(B)
- 2. for each pair A, B calculate mutual information

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

- 3. calculate the maximum spanning tree over the set of variables, using edge weights *I(A,B)* (given N vars, this costs only O(N²) time)
- 4. add arrows to edges to form a directed-acyclic graph
- 5. learn the CPD's for this graph

Chow-Liu algorithm example Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]

Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
 - D-separation lets us decode conditional independence assumptions
- Inference
 - NP-hard in general
 - For some graphs, closed form inference is feasible
 - Approximate methods too, e.g., Monte Carlo methods, ...
- Learning
 - Easy for known graph, fully observed data (MLE's, MAP est.)
 - EM for partly observed data, known graph
 - Learning graph structure: Chow-Liu for tree-structured networks
 - Hardest when graph unknown, data incompletely observed