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Reminders

* Homework 7: Graphical Models
— Out: Mon, Apr. 19
— Due: Fri, Apr. 30 at 11:59pm

* Homework 8: Learning Paradigms

— Out: Fri, Apr. 30
— Due: Fri, May. 7 at 11:59pm




LEARNING THEORY



PAC-MAN Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question: (version B)

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 11-20

C. 2130
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PAC-MAN Learning
For some hypothesis h € H:

1. True Error

R(h)
2. Training Error

R(h)



1.

Questions For Today

Given a classifier with zero training error,
what can we say about true error (aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)



Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not y € {+, -}
based on attributes of the patient

y X X, X3 X4
i allergic? hives?  sneezing? red eye? cat?

1 : Y N N N



Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not y € {+, -}
based on attributes of the patient

y X X, X3 X4
i allergic? hives?  sneezing? red eye? cat?
1 Y N N

2 N Y N N
3 4 Y Y N N
4 Y N Y Y
5 4 N Y Y N



Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not y € {+, -}
based on attributes of the patient

y X X5 X3 X4
| allergic? hives?  sneezing? red eye? cat?
1 y() - Y N N

2 y) - N Y N N
3 y3) + Y Y N N
4 y(@) - Y N Y Y
5 yG) + N Y Y N



Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not y € {+, -}
based on attributes of the patient

y X X5 X3 X4
i allergic? hives?  sneezing? red eye? cat?
1 y() - Y N N
2 y) - N Y N N
3 y3) + Y Y N N
4 y(@) - Y N Y Y
5 yG) + N Y Y N

N = 5 training examples
M = 4 attributes
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PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs, y € Y
— Distribution over instances, p*(+)
— Exists an unknown target function, c* : X— Y

— Set, H, of candidate hypothesis functions, h: X— Y

* Learner is given N training examples

D = {(x(1), y 1)), x(z), y(z)), ey (x(N), y(N))}
where x( ~ p*E-) and y() = ¢*(x®)

* Learner produces a hypothesis function, § = h(x), that
best approximates unknown target function y = ¢*(x) on
the training data



PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs,y € Y

— Distribution |%_nstances, p*(+)
_ EXiStS an un _-I-_:m-l' fiinctinn % . y‘i 1l

Two important settings we’ll

— Set, H, of candida consider:

. Learne(f)is 1)iven(lz\§ 1. Classification: the possible
D = {(x, y*"), gx | outputs are discrete

)a
2. Regression: the possible

* Learnerproducesd  gutputs are real-valued
best approximates

the training data

where x() ~ p*




Medical Diagnosis Dataset

Doctor diagnoses the patient as sick or not y € {+, -}
based on attribut~< of the patient

[¢)

y 1 X4 X, X3 Xy
i allergic?_» hives?  sneezing? red eye? cat?
1 y = Y N N
C
2 y@ Y x,ON Y N N
C
3 y& £ X0y Y N N
C
4 y(4) 4 \* Y N Y Y
C
5 y() N N Y Y N

N = 5 training examples Example hypothesis

. function:
M = 4 attributes h(x) :{ +if sneezing = Y

- otherwise




Model for Supervised ML

o~
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Learning Algorithm

!

h(x)

Predictions
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Model for Supervised ML

Learning Algorithm

!

h(x)

d

1 0,
+

Predictions

0 1

-+ -+ /'/
, é
Test Error Rate
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Two Types of Error

1. True Error (aka. expected risk)

R(h) = Pxapr(x)(c"(x) # h(x)) This qu

2. Train Error (aka. empirical risk) * “ng,’
R(h) = Px~s< “(x) # h(x))

(i) on'e I/Sl/s on
—Zﬂ M(x)) [ the g this
aat ’”/ng
1 N
it (Z) h(x (2)
= 3 2100 £ b))
where S = {x(l) L, x(N) N is the training data set, and x ~

S denotes that x is sampled from the empirical distribution.



l[{l/;ZjVe a/so
PAC/SLT Model /mgiins,

on e
. Generate instances from unknown distribution p*
x'" ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y('i) =" (x(i)), Vi (2)

. Learning algorithm chooses hypothesis h € H with low(est)
training error, R(h)

h = argmin fx’,(h.) (3)
h

. Goal: Choose an h with low generalization error R(h)
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Three Hypotheses of Interest

The true function ¢” is the one we are trying to learn and that labeled
the training data:

y = c*(x'V), Vi (1)

The expected risk minimizer has lowest true error: .
Question:

True or False:
h* and c* are
always equal.

The empirical risk minimizer has lowest training error:

h* = argmin R(h)
heM

h = argmin R(h) (3)
heH
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Three Hypotheses of Interest

Whiteboard:
— Discussion of Poll Question



PAC LEARNING



Probably Approximately Correct

(PAC) Learning
Whiteboard:
— PAC Criterion
— Meaning of “Probably Approximately Correct”
— Def: PAC Learner
— Sample Complexity
— Consistent Learner



PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) — R(h)| <€) >1-6 (1)

Suppose we have a learner that produces a hypothesis h € H
given a sample of NV training examples. The algorithm is called con-
sistent if for every € and 9, there exists a positive number of training
examples N such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < (2)

The sample complexity is the minimum value of N for which this
statement holds. If N is finite for some learning algorithm, then H
is said to be learnable. If N is a polynomial function of * and  for

some learning algorithm, then # is said to be PAC learnable. .



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

We'll start with the
Four Cases we care about... -ﬁnite case...

Realizable ? Agno?

Finite |H|

Infinite ||

31



Generalization and Overfitting

Whiteboard:
— Realizable vs. Agnostic Cases
— Finite vs. Infinite Hypothesis Spaces
— Theorem 1: Realizable Case, Finite |H|
— Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—§) all h € H with R(h) =0
have R(h) < e.

Infinite ||
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Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}V

Example hypotheses:
h(x) = X, (1-X3) X4
h(x) = x, (1-x,) X4 (1'X5)

If M =10, £ = 0.1, 5 = 0.01, how
many examples suffice
according to Theorem 1?

Answer:

10*(2*In(10)+In(100 )) = 92
10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100 )) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10 )) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10 )) = 924
100*(10*In(3)+In(10)) = 1329

ITommonN®

Thm. 1 N > 1[log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1—4¢) all h € H with R(h) =0

have R(h) < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > 1[log(|H|) + log(3)] la-

NI beled examples are sufficient so that with
Finite |H‘ probability (1—§) all h € H with R(h) = 0
have R(h) <.

Thm. 2 N > 55 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Infinite |H,|
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