

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

PAC Learning

Matt Gormley Lecture 24 Apr. 26, 2021

Reminders

- **Homework 7: Graphical Models**
	- **Out: Mon, Apr. 19**
	- **Due: Fri, Apr. 30 at 11:59pm**
- **Homework 8: Learning Paradigms**
	- **Out: Fri, Apr. 30**
	- **Due: Fri, May. 7 at 11:59pm**

LEARNING THEORY

PAC-MAN Learning For some hypothesis $h \in \mathcal{H}$:

1. True Error $R(h)$

2. Training Error $\hat{R}(h)$

Question: (version A) Question: (version B)

What is the expected number OT PAC-MAN JEVEIS MUTT WILL
complete before a **Came** Over? of PAC-MAN levels Matt will complete before a **Game- Over**?

- Δ 1-10 A. 1-10
- B. 11-20
- $C.$ 21-30

PAC-MAN Learning For some hypothesis $h \in \mathcal{H}$:

- 1. True Error $R(h)$
- 2. Training Error $\hat{R}(h)$

Questions For Today

- 1. Given a classifier with **zero training error**, what can we say about **true error** (aka.
generalization error)? (Sample Complexity, Realizable Case)
- 2. Given a classifier with **low training error**, what can we say about **true error** (aka. generalization error)? (Sample Complexity, Agnostic Case)
- 3. Is there a **theoretical justification for regularization** to avoid overfitting? (Structural Risk Minimization)

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

 $N = 5$ training examples $M = 4$ attributes

PAC/SLT Model for Supervised ML

- **Problem Setting**
	- Set of possible inputs, $x \in \mathcal{X}$ (all possible patients)
	- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
	- Distribution over instances, $p^*(\cdot)$
	- Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain)
	- Set, H , of candidate hypothesis functions, h : $\mathcal{X} \rightarrow \mathcal{Y}$
(all possible decision trees)
- **Learner is given** N training examples
 $D = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(N)}, y^{(N)}) \}$ where $x^{(i)}$ \sim $p^*(\cdot)$ and $y^{(i)}$ = $c^*(x^{(i)})$) (history of patients and their diagnoses)
- **Learner produces** a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

PAC/SLT Model for Supervised ML

- **Problem Setting**
	- Set of possible inputs, $x \in \mathcal{X}$ (all possible patients)
	- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
	- Distribution $\bigcap_{i=1}^{\infty} P_i$ instances, $p^*(\cdot)$
	- Exists an unknown target function, $c^* \cdot \gamma \rightarrow 11$ (the doctor's brain) Two important settings we'll
	- Set, H , of candidate functions, here $\left\{ \begin{array}{c} \\ 0 & \text{otherwise} \end{array} \right\}$ consider:
- Learner is given N $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $D = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots \}$ where $x^{(i)}$ $\sim p^*(\cdot)$ and (history of patients 2.
- Learner produces a **computity function, in the best approximates** uncertainty are real-valued the training data
- **1. Classification**: the possible outputs are **discrete**
- **2. Regression**: the possible outputs are **real-valued**

Two Types of Error 1. True Error (aka. **expected risk**) This quantity $R(h) = P_{\mathbf{x} \sim p^*(\mathbf{x})}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$ is alwant
'nkn **unknown** 2. Train Error (aka. **empirical risk**) $\hat{R}(h) = P_{\mathbf{x} \sim S}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$ measure this
on the training
data = $\frac{1}{N} \sum_{i=1}^{N} 1(c^*(\mathbf{x}^{(i)}) \neq h(\mathbf{x}^{(i)}))$ $=\frac{1}{N}\sum_{i=1}^{N}1(y^{(i)}\neq h(\mathbf{x}^{(i)}))$

where $\mathcal{S} = {\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}}\}_{i=1}^N$ is the training data set, and $\mathbf{x} \sim$ S denotes that x is sampled from the empirical distribution.

PAC / SLT Model

1. Generate instances from unknown distribution p^*

$$
\mathbf{x}^{(i)} \sim p^*(\mathbf{x}), \forall i \tag{1}
$$

2. Oracle labels each instance with unknown function c^*

$$
y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i
$$
 (2)

3. Learning algorithm chooses hypothesis $h \in \mathcal{H}$ with low(est) training error, $\hat{R}(h)$

$$
\hat{h} = \underset{h}{\operatorname{argmin}} \,\hat{R}(h) \tag{3}
$$

4. Goal: Choose an h with low generalization error $R(h)$

Three Hypotheses of Interest

The true function c^* is the one we are trying to learn and that labeled the training data:

$$
y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i
$$
 (1)

The expected risk minimizer has lowest true error:

 $h^* = \operatorname{argmin} R(h)$ $h \in H$

Question: *True or False*: h* and c* are always equal.

The empirical risk minimizer has lowest training error:

$$
\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \,\hat{R}(h) \tag{3}
$$

Three Hypotheses of Interest

Whiteboard:

– Discussion of Poll Question

PAC LEARNING

Probably Approximately Correct (PAC) Learning

Whiteboard:

- PAC Criterion
- Meaning of "Probably Approximately Correct"
- Def: PAC Learner
- Sample Complexity
- Consistent Learner

PAC Learning

The PAC criterion is that our learner produces a high accuracy learner with high probability:

$$
P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \tag{1}
$$

Suppose we have a learner that produces a hypothesis $h \in \mathcal{H}$ given a sample of N training examples. The algorithm is called consistent if for every ϵ and δ , there exists a positive number of training examples N such that for any distribution p^* , we have that:

$$
P(|R(h) - \hat{R}(h)| > \epsilon) < \delta \tag{2}
$$

The sample complexity is the minimum value of N for which this statement holds. If N is finite for some learning algorithm, then H is said to be **learnable**. If N is a polynomial function of $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$ for some learning algorithm, then H is said to be PAC learnable.

SAMPLE COMPLEXITY RESULTS

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Generalization and Overfitting

Whiteboard:

- Realizable vs. Agnostic Cases
- Finite vs. Infinite Hypothesis Spaces
- Theorem 1: Realizable Case, Finite |H|
- Proof of Theorem 1

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

Example: Conjunctions

Question:

Suppose H = class of conjunctions over **x** in {0,1}M

Example hypotheses: $h(x) = x_1 (1-x_3) x_5$ $h(x) = x_1 (1-x_2) x_4 (1-x_5)$

If M = 10, ε = 0.1, δ = 0.01, how many examples suffice according to Theorem 1?

Answer:

- A. $10^*(2^*ln(10)+ln(100)) \approx 92$
- B. $10^*(3^*ln(10)+ln(100)) \approx 116$
- C. $10^*(10^*\ln(2)+\ln(100)) \approx 116$
- D. $10*(10*ln(3)+ln(100)) \approx 156$
- E. $100*(2*ln(10)+ln(10)) \approx 691$
- F. $100*(3*ln(10)+ln(10)) \approx 922$
- G. $100^*(10^*ln(2)+ln(10)) \approx 924$
- H. $100*(10*ln(3)+ln(10)) \approx 1329$

Thm. 1 $N \geq \frac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about…

