

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

PAC Learning

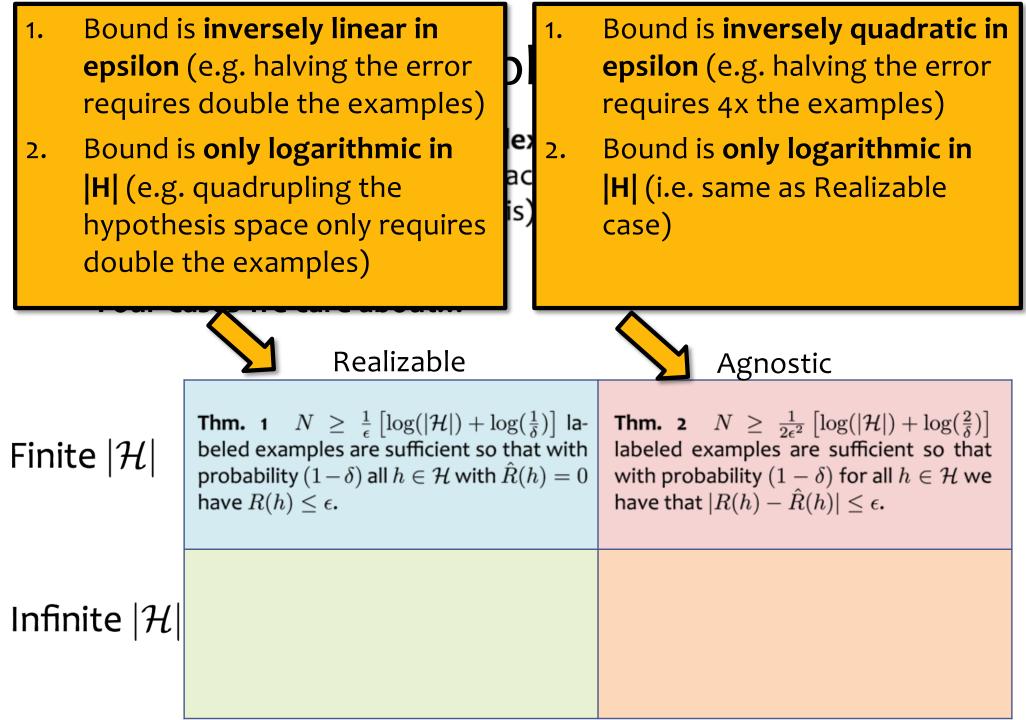
Matt Gormley Lecture 25 Apr. 28, 2021

Reminders

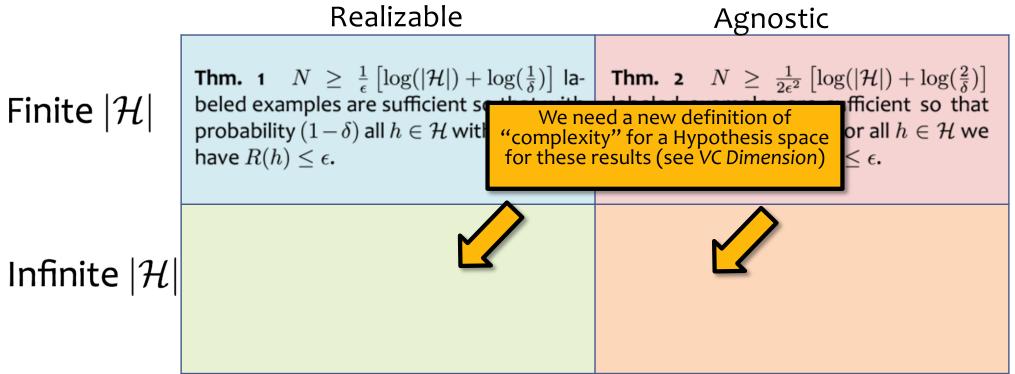
- Homework 7: Graphical Models
 - Out: Mon, Apr. 19
 - Due: Fri, Apr. 30 at 11:59pm
- Homework 8: Learning Paradigms
 - Out: Fri, Apr. 30
 - Due: Fri, May. 7 at 11:59pm

Definition 0.1. The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

	Realizable	Agnostic
Finite $ \mathcal{H} $	$\begin{array}{ll} \text{Thm. 1} N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right] \text{ labeled examples are sufficient so that with probability } (1-\delta) \text{ all } h \in \mathcal{H} \text{ with } \hat{R}(h) = 0 \\ \text{have } R(h) \leq \epsilon. \end{array}$	Thm. 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \leq \epsilon$.
Infinite $ \mathcal{H} $		



Definition 0.1. The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).



Definition 0.1. The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

	Realizable	Agnostic
Finite $ \mathcal{H} $	$\begin{array}{ll} \text{Thm. 1} N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right] \text{ labeled examples are sufficient so that with probability } (1-\delta) \text{ all } h \in \mathcal{H} \text{ with } \hat{R}(h) = 0 \\ \text{have } R(h) \leq \epsilon. \end{array}$	Thm. 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \leq \epsilon$.
Infinite $ \mathcal{H} $	Thm. 3 $N=O(\frac{1}{\epsilon}\left[VC(\mathcal{H})\log(\frac{1}{\epsilon})+\log(\frac{1}{\delta})\right])$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.	Thm. 4 $N = O(\frac{1}{\epsilon^2} \left[VC(\mathcal{H}) + \log(\frac{1}{\delta}) \right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \le \epsilon$.

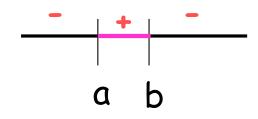
VC DIMENSION

E.g., linear separators in R^d

E.g., thresholds on the real line



E.g., intervals on the real line



H[S] - the set of splittings of dataset S using concepts from H. H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways; i.e., all possible ways of classifying points in S are achievable using concepts in H.

VC Dimension

Whiteboard:

- Shattering example: binary classification

H[S] - the set of splittings of dataset S using concepts from H. H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways; i.e., all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

VC Dimension

Whiteboard:

- VC Dimension Example: linear separators
- Proof sketch of VCDim for linear separators in 2D

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

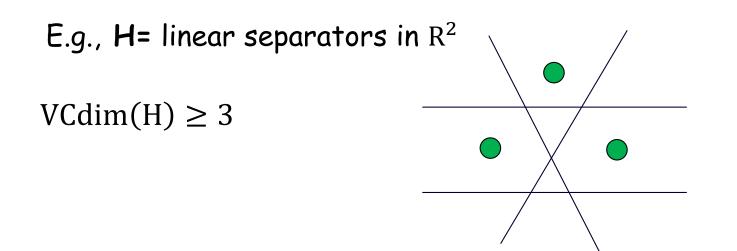
The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

To show that VC-dimension is d:

- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then $VCdim(H) \le log(|H|)$.



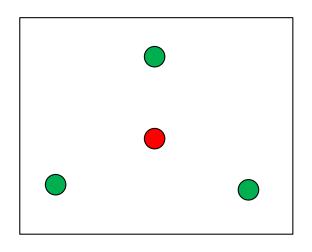
E.g., H= linear separators in \mathbb{R}^2

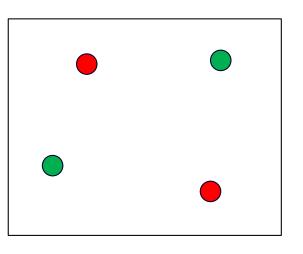
VCdim(H) < 4

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in R^d is d+1





∃ vs.∀

VCDim

– Proving VC Dimension requires us to show that there exists (∃) a dataset of size d that can be shattered and that there does not exist (∄) a dataset of size d+1 that can be shattered

Shattering

Proving that a particular dataset can be shattered requires us to show that for all (∀) labelings of the dataset, our hypothesis class contains a hypothesis that can correctly classify it

VC-Dimension Examples

 <u>Definition</u>: If VC(H) = d, then there exists (∃) a dataset of size d that can be shattered and that there does not exist (∄) a dataset of size d+1 that can be shattered

Question:

What is the VC Dimension of H = **thresholds on the real line**. That is for a threshold w, everything to the right of w is labeled as +1, everything else is labeled -1.

Answer:

VC-Dimension Examples

 <u>Definition</u>: If VC(H) = d, then there exists (∃) a dataset of size d that can be shattered and that there does not exist (∄) a dataset of size d+1 that can be shattered

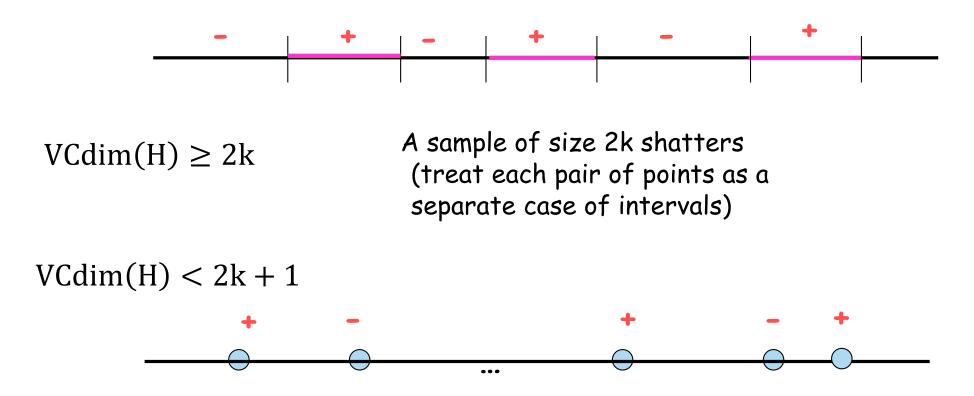
Question:

What is the VC Dimension of H = **intervals on the real line**. That is for an interval (w_1, w_2) , everything inside the interval is labeled as +1, everything else is labeled -1.

Answer:

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k



Slide from Nina Balcan

Definition 0.1. The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

	Realizable	Agnostic
Finite $ \mathcal{H} $	$\begin{array}{ll} \text{Thm. 1} N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right] \text{ labeled examples are sufficient so that with probability } (1-\delta) \text{ all } h \in \mathcal{H} \text{ with } \hat{R}(h) = 0 \\ \text{have } R(h) \leq \epsilon. \end{array}$	Thm. 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \leq \epsilon$.
Infinite $ \mathcal{H} $	Thm. 3 $N=O(\frac{1}{\epsilon}\left[VC(\mathcal{H})\log(\frac{1}{\epsilon})+\log(\frac{1}{\delta})\right])$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.	Thm. 4 $N = O(\frac{1}{\epsilon^2} \left[VC(\mathcal{H}) + \log(\frac{1}{\delta}) \right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \le \epsilon$.

SLT-style Corollaries Thm. 1 $N \ge \frac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$.

Corollary 1 (Realizable, Finite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for any h in \mathcal{H} consistent with the training data (i.e. $\hat{R}(h) = 0$),

$$R(h) \leq \frac{1}{N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right]$$

We can obtain similar corollaries for each of the theorems...

SLT-style Corollaries

Corollary 1 (Realizable, Finite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for any h in \mathcal{H} consistent with the training data (i.e. $\hat{R}(h) = 0$),

$$R(h) \leq \frac{1}{N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right]$$

Corollary 2 (Agnostic, Finite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in \mathcal{H} ,

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right]}$$

SLT-style Corollaries

Corollary 3 (Realizable, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for any hypothesis h in \mathcal{H} consistent with the data (i.e. with $\hat{R}(h) = 0$),

$$R(h) \le O\left(\frac{1}{N}\left[\mathsf{VC}(\mathcal{H})\ln\left(\frac{N}{\mathsf{VC}(\mathcal{H})}\right) + \ln\left(\frac{1}{\delta}\right)\right]\right)$$
(1)

Corollary 4 (Agnostic, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in \mathcal{H} ,

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{N}\left[\mathsf{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right]}\right)$$
(2)

SLT-style Corollaries

Corollary 3 (Realizable, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for any hypothesis h in \mathcal{H} consistent with the data (i.e. with $\hat{R}(h) = 0$),

$$R(h) \le O\left(\frac{1}{N}\left[\mathsf{VC}(\mathcal{H})\ln\left(\frac{N}{\mathsf{VC}(\mathcal{H})}\right) + \ln\left(\frac{1}{\delta}\right)\right]\right)$$
(1)

Corollary 4 (Agnostic, Infinite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in \mathcal{H} ,

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{N}\left[\mathsf{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right]}\right)$$
(2)

Should these corollaries inform how we do model selection?

Generalization and Overfitting

Whiteboard:

- Model Selection
- Empirical Risk Minimization
- Structural Risk Minimization
- Motivation for Regularization

Questions For Today

- Given a classifier with zero training error, what can we say about generalization error? (Sample Complexity, Realizable Case)
- Given a classifier with low training error, what can we say about generalization error? (Sample Complexity, Agnostic Case)
- Is there a theoretical justification for regularization to avoid overfitting? (Structural Risk Minimization)

Learning Theory Objectives

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world learning examples
- Distinguish between a large sample and a finite sample analysis
- Theoretically motivate regularization