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Reminders

• Homework 7: Graphical Models
– Out: Mon, Apr. 19

– Due: Fri, Apr. 30 at 11:59pm

• Homework 8: Learning Paradigms
– Out: Fri, Apr. 30

– Due: Fri, May. 7 at 11:59pm
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Sample Complexity Results

6

Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

We need a new definition of 
“complexity” for a Hypothesis space 
for these results (see VC Dimension)



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



VC DIMENSION
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What if H is infinite? 

E.g., linear separators in Rd 
+ 
- 

+ + + 
- - 

- 
- 

- 

E.g., intervals on the real line 

a b 

+ - - 

E.g., thresholds on the real line 
w 

+ - 

Slide from Nina Balcan
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Shattering, VC-dimension 

A set of points S is shattered by H is there are hypotheses in H 
that split S in all of the ʹ|ௌ| possible ways; i.e., all possible ways of 
classifying points in S are achievable using concepts in H. 

Definition: 

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H. 

Definition: 

If arbitrarily large finite sets can be shattered by H, then 
VCdimሺHሻ ൌ λ 

VC-dimension (Vapnik-Chervonenkis dimension) 

H shatters S if |H S | ൌ ʹ|ௌ|. 
H[S] – the set of splittings of dataset S using concepts from H. 

Slide from Nina Balcan



VC Dimension

Whiteboard:
– Shattering example: binary classification
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Shattering, VC-dimension 

A set of points S is shattered by H is there are hypotheses in H 
that split S in all of the ʹ|ௌ| possible ways; i.e., all possible ways of 
classifying points in S are achievable using concepts in H. 

Definition: 

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H. 

Definition: 

If arbitrarily large finite sets can be shattered by H, then 
VCdimሺHሻ ൌ λ 

VC-dimension (Vapnik-Chervonenkis dimension) 

H shatters S if |H S | ൌ ʹ|ௌ|. 
H[S] – the set of splittings of dataset S using concepts from H. 

Slide from Nina Balcan



VC Dimension

Whiteboard:
– VC Dimension Example: linear separators
– Proof sketch of VCDim for linear separators in 2D
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Shattering, VC-dimension 

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H. 

Definition: 

If arbitrarily large finite sets can be shattered by H, then 
VCdim(H) = ∞ 

VC-dimension (Vapnik-Chervonenkis dimension) 

To show that VC-dimension is d: 

– there is no set of d+1 points that can be shattered. 
– there exists a set of d points that can be shattered 

Fact: If H is finite, then VCdim (H) ≤ log (|H|). 

Slide from Nina Balcan
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E.g., H= linear separators in Rଶ 

Shattering, VC-dimension 

VCdim H ൒ 3 

Slide from Nina Balcan
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Shattering, VC-dimension 

VCdim H ൏ 4 

Case 1: one point inside the triangle formed by 
the others. Cannot label inside point as positive 
and outside points as negative. 

Case 2: all points on the boundary (convex hull).  
Cannot label two diagonally as positive and other 
two as negative. 

Fact: VCdim of linear separators in Rୢ is d+1 

E.g., H= linear separators in Rଶ 

Slide from Nina Balcan



∃ vs. ∀
VCDim
– Proving VC Dimension requires us to show that 

there exists (∃) a dataset of size d that can be 
shattered and that there does not exist (∄) a 
dataset of size d+1 that can be shattered

Shattering
– Proving that a particular dataset can be 

shattered requires us to show that for all (∀) 
labelings of the dataset, our hypothesis class 
contains a hypothesis that can correctly classify 
it
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VC-Dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC Dimension of H = thresholds on the real line. That is for a 
threshold w, everything to the right of w is labeled as +1, everything else is 
labeled -1.

Figures from Nina Balcan



VC-Dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC Dimension of H = intervals on the real line. That is for an 
interval (w1, w2), everything inside the interval is labeled as +1, everything 
else is labeled -1.

Figures from Nina Balcan
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Shattering, VC-dimension 
If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered. 

E.g., H= Union of k intervals on the real line 

+ - - 

VCdim H ൌ ʹk 

+ - + 

+ - + - 
… 

VCdim H ൏ ʹk ൅ 1 

VCdim H ൒ ʹk             A VamSle of Vi]e 2k VhaWWeUV 
(WUeaW each SaiU of SoinWV aV a 
VeSaUaWe caVe of inWeUYalV)  

+ 

Slide from Nina Balcan



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…



SLT-style Corollaries
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SLT-style Corollaries
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SLT-style Corollaries
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Should these corollaries inform 
how we do model selection?



Generalization and Overfitting

Whiteboard:
– Model Selection
– Empirical Risk Minimization
– Structural Risk Minimization
– Motivation for Regularization
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Questions For Today

1. Given a classifier with zero training error, what 
can we say about generalization error?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about generalization error?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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Learning Theory Objectives
You should be able to…
• Identify the properties of a learning setting and 

assumptions required to ensure low generalization 
error

• Distinguish true error, train error, test error
• Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

• Apply sample complexity bounds to real-world 
learning examples

• Distinguish between a large sample and a finite 
sample analysis

• Theoretically motivate regularization
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