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Reminders

* Homework 7: Graphical Models
— Out: Mon, Apr. 19
— Due: Fri, Apr. 30 at 11:59pm

* Homework 8: Learning Paradigms

— Out: Fri, Apr. 30
— Due: Fri, May. 7 at 11:59pm




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > L[log(|H])+log(3)] la-| Thm. 2 N > 35 [log(|H|) + log(3)]
Finite |H| beled examples are sufficient so that with | labeled examples are sufficient so that

probability (1—4) all A € ‘H with R(h) = 0 | with probability (1 — d) forall h € H we
have R(h) < e. have that |R(h) — R(h)| < e.

Infinite |H|




1.  Bound is inversely linear in 1. Bound is inversely quadratic in
epsilon (e.g. halving the error P epsilon (e.g. halving the error
requires double the examples) requires 4x the examples)

€12. Boundis only logarithmic in
|H| (i.e. same as Realizable
case)

2. Bound is only logarithmic in
|H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

% Agnostic

Realizable

Thm. 1 N > 1[log(|H|) +1log(3)] la- | Thm. 2 N > L5 [log(|H|) + log(%)]
Finite |’7L” beled examples are sufficient so that with | labeled examples are sufficient so that

probability (1 —9) all h € H with R(h) = 0 | with probability (1 — §) forallh € ‘H we
have R(h) < e. have that |R(k) — R(h)| < e.

Infinite |H,|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > I[log(|H])+log(3)] la-| Thm. 2 N > 3L [log(|H|) + log(3)]

o i i T —— . t
Finite |’7L[| beled e.x.amples are suf’ﬁcnent.s T P — T —— fficient so that
probability (1—0) all h € H wit] «complexity” for a Hypothesis space forallh € H we

have R(h) < e. for these results (see VC Dimension) [< .

Infinite |H| If y
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to 1).

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite ||

Infinite |H|

Realizable

Agnostic

Thm. 1
beled examples are sufficient so that with
probability (1— ) all h € H with R(h) = 0
have R(h) < e.

N > Llog(|H]) +log(})] la-

Thm. 2 N > 5% [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(1 [VC(H)log(2) + log(3)])
labeled examples are sufficient so that
with probability (1 — d) all h € H with

A~

R(h) = 0bhave R(h) < e.

Thm. 4 N = O(% [VC(H) +1log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < .
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VC DIMENSION



E.g., thresholds on the real line |

E.g., intervals on the real line

Slide from Nina Balcan



Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 29!,
A set of points S is shattered by H is there are hypotheses in H

that split S in all of the 25! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Slide from Nina Balcan



VC Dimension

Whiteboard:
— Shattering example: binary classification



Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 29I,
A set of points S is shattered by H is there are hypotheses in H

that split S in all of the 25! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnhik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

Slide from Nina Balcan



VC Dimension

Whiteboard:

— VC Dimension Example: linear separators
— Proof sketch of VCDim for linear separators in 2D



Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H]).

Slide from Nina Balcan



Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) > 3 >(

Slide from Nina Balcan



Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive

and outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other @
two as negative.

Fact: VCdim of linear separators in RY is d+1

Slide from Nina Balcan



4 vs.V

VCDIim

— Proving VC Dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be
shattered requires us to show that for all ()
labelings of the dataset, our hypothesis class

contains a hypothesis that can correctly classify
it

22



VC-Dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

Question:

What is the VC Dimension of H = thresholds on the real line. That is for a
threshold w, everything to the right of w is labeled as +1, everything else is

labeled -1.
-— I +

w

Answer:



VC-Dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

Question:

What is the VC Dimension of H = intervals on the real line. That is for an
interval (w,, w,), everything inside the interval is labeled as +1, everything
else is labeled 1.

— T

Answer:



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
—

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of infervals)

VCdim(H) < 2k + 1

+
o

N

+

()
()
PO
O
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite ||

Infinite |H|

Realizable

Agnostic

Thm. 1
beled examples are sufficient so that with
probability (1— ) all h € H with R(h) = 0
have R(h) < e.

N > Llog(|H]) +log(})] la-

Thm. 2 N > 5% [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(1 [VC(H)log(2) + log(3)])
labeled examples are sufficient so that
with probability (1 — d) all h € H with

A~

R(h) = 0bhave R(h) < e.

Thm. 4 N = O(% [VC(H) +1log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < .
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SLT-style Corollaries

Thm. 1 N > 1[log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1 —¢) all h € H with R(h) = 0
have R(h) < e.

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |#|). For some d > 0, with probabil-

ity at least (1 — d), for any h in H consistent with the training data
(i.e. R(h) =0),

We can obtain

1 1 similar corollaries for
R(h) < N [111(|'H|) + In (—)] each of the

) theorems...
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SLT-style Corollaries

Corollary 1 (Realizable, Finite |#|). For some § > 0, with probabil-
ity at least (1 — 4), for any h in H consistent with the training data
(i.e. R(h) =0),

R < 3 () + 1 (5]

Corollary 2 (Agnostic, Finite |#|). Forsome d > 0, with probability
at least (1 — 4), for all hypotheses h in H,

31



SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some d > 0, with proba-
bility at least (1 — 4), for any hypothesis h in H consistent with the
data (i.e. with R(h) = 0),

R(h) <O (% [VC(H) In (\%ﬂ)) n (%)D ()

Corollary 4 (Agnostic, Infinite |7{|). Forsomed > 0, with probabil-
ity at least (1 — d), for all hypotheses h in H,

R(h) < R(h) + O (\/ % [vc(u) +1In (%)D 2)
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SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some d > 0, with proba-
bility at least (1 — 4), for any hypothesis i in H consistent with the
data (i.e. with R(h) = 0),

7 <0 (i [vetom (gegg )+ (5)]) o

Corollary 4 (Agnostic, Infinite |#|). Forsome d > 0, with probabil-
ity at least (1 — ¢), for all hypotheses h in H,

R(h) < R(h) + O (\/ ]tr [vc(%) +In ( ;)D (2)
o\

Should these corollaries inform
how we do model selection? .




Generalization and Overfitting

Whiteboard:
— Model Selection
— Empirical Risk Minimization
— Structural Risk Minimization
— Motivation for Regularization



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



