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Today: Recommended reading:
_ o « Wall et al., PCA tutorial,
Rep;(e:;entatlon learning: https://arxiv.org/pdf/physics/0208101.pdf
Privacy in ML: » “Key ideas in ML,” Mitchell,

http://www.cs.cmu.edu/~tom/mlbook/keyldeas.pdf

* Bias and fairness in Al, Borealis,
https://www.borealisai.com/en/blog/tutorial1 -
bias-and-fairness-ai

Fairness, bias in ML:

 How do we avoid learning
biased classifiers?



https://arxiv.org/pdf/physics/0208101.pdf
http://www.cs.cmu.edu/~tom/mlbook/keyIdeas.pdf
https://www.borealisai.com/en/blog/tutorial1-bias-and-fairness-ai

Principle Components Analysis



Principle Components Analysis

e |dea:

— Given data points in d-dimensional space, project into lower
dimensional space while preserving as much information as
possible

« E.g., find best planar approximation to 3D data
« E.g., find best planar approximation to 10* D data

— In particular, choose an orthogonal projection that minimizes the
squared error in reconstructing original data




Principle Components Analysis

« Like auto-encoding neural networks, learn re-
representation of input data that can best reconstruct it

PCA:
* |earned encoding is linear function of inputs
* No local minimum problems when training!

* Given d-dimensional input data X, learns a new d-
dimensional representation, where

— the dimensions are orthogonal

— top k dimensions are the k-dimensional linear re-representation
that minimizes reconstruction error (sum of squared errors)



PCA Example
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Thanks to Christopher DeCoro
see http://chrisdecoro.com/eigenfaces/index.html



Reconstructing a face
from the first N
components
(eigenfaces)
Adding 1
additional PCA
component at
each step

Adding 8
additional PCA
components at
each step
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In this next image, we show a similar picture, but with each
additional face representing an additional 8 principle components.
You can see that it takes a rather large number of images before
the picture looks totally correct.

§§




Learned Hidden Unit Weights

left strt rght up Learned Weights

Typical input images

http://www.cs.cmu.edu/~tom /faces.html



PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth example vector is
We can represent these in terms of any d orthogonal vectors u; ... uy
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PCA
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PCA
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Minimize Eyy = Y. ul = w t

PCA
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— 2 = AW
x NUnit length Eigenvector of £

Eigenvalue (scalar)
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PCA algorithm 1:

1. X €& Create N x d data matrix, with
one row vector x" per data point

2. X €& subtract mean x from each row
vector x” in X

3. X € covariance matrix of X

4. Find eigenvectors and eigenvalues
of

5. PC’s < the M eigenvectors with
largest eigenvalues




PCA Example
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PCA Example

M
X" =x+ ZZ’ZL“’L
1=1

) Figure 1

File Edit View Insert Tools Desktop Window Help

=10l x|

Reconstructed data
using only first

eigenvector (M=1)
e~

File Edit View Insert Tools Desktop Window Help

Deda(hfam® €08 a0

DeEaeh faa@e @08 O

g
gr Q

7r o

mean

Q
\ 4_First
5t < eigenvector
o] o]

I

Second
eigenvector

9r

8t o)




Representation Learning Overview

Principle Components Analysis
— Singular Value Decomposition
— application to face image compression

Neural Nets

— Hidden layers

Matrix Factorization

— relationship to linear neural networks

Canonical Correlation Analysis
— analysis of brain image data across human subjects

Independent Components Analysis

Latent Dirichlet Allocation
— analysis of email interactions



Very Nice When Initial Dimension Not Too Big

What if very large dimensional data”

*e.g., Images (d , 10*4)

Problem:
» Covariance matrix Z is size (d x d)
«d=10* > |X|=108

Singular Value Decomposition (SVD) to the rescue!
* pretty efficient algs available, including Matlab SVD

« some implementations find just top N eigenvectors



SVD
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Data X, one
row per data
point

[from Wall et al., 2003]
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Singular Value Decomposition

To generate principle components:

e 1 N mn .
e Subtract mean *= le from each data point, to

n—=—

create zero-centered data

* Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X=USIV"

« QOutput Principle components: columns of V' (= rows of /")
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S is diagonal, with s, giving eigenvalue for kth eigenvector



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
V' x

If x; is it" row of data matrix X, then
o (i"row of US) = VT x,T
. (US)T=VTXT

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of I x



Privacy Enhanced Machine Learning



How Can We Minimize Privacy Impacts of ML?

Some approaches:

1. Trusted third party.

— E.g. US Census Bureau collects/disseminates data

2. Homomorphic encryption.

3. Differential privacy.



Encryption-Based Methods

Problem setting:
« Have N sources of data (e.g., students)

* Person P wishes to know some summary statistic about
their joint data (e.g., mean, variance of 2020 summer
income)

 No source wants to reveal their individual data to others,
iIncluding to person P



Encryption-Based Methods

Problem setting:
« Have N sources of data (e.g., students)

* Person P wishes to know some summary statistic about
their joint data (e.g., mean, variance of 2020 summer
income)

 No source wants to reveal their individual data to others,
iIncluding to person P

Approach:
* Send encrypted message sequentially to the N sources

« Each adds in their data to the encrypted message, and
passes it to the next data source

* Message finally returns to person P, who decodes it



Encryption-Based Methods

Approach:
« Send encrypted message sequentially to the N sources

« Each adds in their data to the encrypted message, and
passes it to the next data source

« Message finally returns to person P, who decodes it

Example:
* Find average summer student income for 2020



Encryption-Based Methods

Approach:
« Send encrypted message sequentially to the N sources

« Each adds in their data to the encrypted message, and
passes it to the next data source

« Message finally returns to person P, who decodes it

Example:
* Find average summer student income for 2020



Encryption-Based Methods

Example:
* Find average summer student income for 2020

Approach:

1.

2.

Person P makes up a huge random number, and sends
it to data source 1

Data source 1 adds in their summer 2020 income, and
passes result to data source 2

Data source 2 adds in their data, and the sum continues
around to each data source who add in their data

Final data source N returns the final message to person
P, who subtracts out their random number, divides by N

Nobody learns anything about any individual!



Encryption-Based Methods

We can use this to learn, e.g., decision trees, Naive Bayes
classifiers, which require only statistics of the form:

 How many of your data points that satisfy property p1
also satisfy property p27?

Example:

* Learn decision tree to predict treatment effectiveness for
hospitalized Covid patients

* Thousands of hospitals as data sources, who
don’t/won’t/can’t share individual patient data

« -2 Can learn the decision tree by repeatedly applying
this method to answer above query type



Encryption-Based Methods

A problem:

« Data source j and data source j+2 might collude to
calculate the contribution of data source j+1

« -2 Use homomorphic encryption instead of a big random
number

— Can operate directly on the encrypted sum, to add in your
contribution, without first decrypting it

— Prevents this kind of collusion

— But only certain arithmetic operations can be accomplished as
operations on the encoded message...




Differential Privacy

Problem setting:

 \Want to release some statistics about a dataset
describing people

« But don’t want to reveal any personal details

Key idea:
* Privacy of person p cannot be compromised if p is not in
the dataset

* Therefore, release only statistical summaries that would
be (almost) the same if p was not in the dataset



Differential Privacy

Problem setting:

 Want to release some statistics about a dataset
describing people

« But don’t want to reveal any personal details

Precise idea:

Set of all outputs
A may produce

Definition of e-differential privacy |edit]

Let £ be a positive real number and .4 be a randomized algorithm that takes a dataset as‘iyvd
(representing the actions of the trusted party holding the data). Let im .4 denote the image of A.
The algorithm A is said to provide e-differential privacy if, for all datasets D, and D, that differ

on a single element (i.e., the data of one person), and all subsets S of im .A4:
Pr[A(D,) € S] < exp(e) - Pr[A(D;) € §,

where the probability is taken over the randomness used by the algorithm. !

[Wikipedia]




Fairness and Bias in Machine Learning

D CSET saxGncrocor About  Researc h  NewsandEvents | Q

The EU proposes a suite of new Al
regulations, the FTC warns Al
companies to fix biased algorithms,

[news from April 29, 2021]



FTC Warns Companies — Make Al Fair, Or Else: The Federal Trade Commission
issued updated guidance on commercial Al last week, warning companies that
using or selling biased Al systems, or exaggerating the capabilities of their
algorithms, could constitute a violation of federal law. In the blog post, an FTC
lawyer advises companies to take steps to ensure that their Al systems don't
discriminate on the basis of race or other legally protected classes. Among
those steps: limiting the use of datasets that don't include minority
populations, testing algorithms for discriminatory outcomes, and opening up
data and source code to outside inspection. The post warns companies to
“hold yourself accountable — or be prepared for the FTC to do it for you.” While
the post is not the first time the FTC has focused on fairness in Al systems,
observers noted the “unusually stark language” in the new guidance and called
it a “shot across the bow” for U.S. Al development.

[news from April 29, 2021]



EU Proposes New Al Regulations: Last week, the European Commission
proposed a slate of new Al regulations that would impose strict controls on
certain “high risk” commercial Al applications and ban others entirely.
Prohibited Al would include systems used for social scoring, “subliminal”
manipulation, and real-time biometric surveillance by law enforcement, though
certain exceptions (such as to identify specific missing children or prevent an
imminent terrorist attack) would apply. Systems deemed “high risk” would be
subjected to extensive inspections before deployment to ensure they are
trained on well-organized and unbiased data, provide clear and transparent
information to users, and are subject to human oversight. Fines for violations
of the proposed regulations would be severe: up to 6 percent of the offending
company’s global sales. While the regulations would be some of the strictest in
the world, they have attracted criticism from advocates due to their broad
exceptions for law enforcement. They would also not affect military

[news from April 29, 2021]



Fairness and Bias in Machine Learning

Consider scenario:

You have a historical data set of loan applications, labeled
by whether they were approved.

It involves two groups of people, the blue and yellow group

Blue group members have historically received loan
approvals at a higher rate than yellow

A statistically unbiased ML algorithm, when run on this data,
will learn to perpetuate the social bias inherent in the data

You wish to learn a socially unbiased loan approval classifier

What can you do?




What Can You Do?

« Change the data?
« Change the training objective function?

« Train the same way, but change how you use the learned
classifier?



What Does it Mean to be Fair?

See: https://www.borealisai.com/en/blog/tutorial1-bias-and-fairness-ai/



Definitions of fairness

A model is considered fairif errors are distributed similarly across protected groups,
although there are many ways to define this. Consider taking data x and using a
machine learning model to compute a score f[x] that will be used to predict a binary
outcome y € {0, 1}. Each data example x is associated with a protected attribute p. In
this tutorial, we consider it to be binary p € {0, 1}. For example, it might encode sub-
populations according to gender or ethnicity.

We will refer to p = 0 as the deprived population and p = 1 as the favored population.
Similarly we will refer toy = 1 as the favored outcome, assuming it represents the
more desirable of the two possible results.

Assume that for some dataset, we know the ground truth outcomes y € {0, 1}. Note
that these outcomes may differ statistically between different populations, either
because there are genuine differences between the groups or because the model is
somehow biased. According to the situation, we may want our estimate y to take
account of these differences or to compensate for them.

Most definitions of fairness are based on group fairness, which deals with statistical

fairness across the whole population. Complementary to this is individual

fairness which mandates that similar individuals should be treated similarly

regardless of group membership. In this blog, we'll mainly focus on group fairness,

three definitions of which include: (i) demographic parity, (ii) equality of odds, and

(iii) equality of opportunity. We now discuss each in turn. Boreal iS Al



Demographic Parity

Demographic parity or statistical parity suggests that a predictor is unbiased if the
prediction y is independent of the protected attribute p so that

Pr(y|p) = Pr(y). (2.1)

Here, the same proportion of each population are classified as positive. However, this
may result in different false positive and true positive rates if the true outcome y does
actually vary with the protected attribute p.

Borealis Al



Equality of odds

Equality of odds is satisfied if the prediction y is conditionally independent to the
protected attribute p, given the true value y:

Pr(yly,p) = Pr(yly). (2.3)

This means that the true positive rate and false positive rate will be the same for each
population; each error type is matched between each group.

Borealis Al



Equality of opportunity

Equality of opportunity has the same mathematical formulation as equality of odds,
but is focused on one particular label ¥y = 1 of the true value so that:

Pr(yly=1,p) = Pr(yly =1). (2.4)

In this case, we want the true positive rate Pr(y = 1|y = 1) to be the same for each
population with no regard for the errors when y = 0. In effect it means that the same
proportion of each population receive the "good'' outcome y = 1.

Borealis Al



Some Things are Impossible

Impossible to guarantee all three of these simultaneously:

« Equal false positive rates across groups
— False positiverate= P(y = 1|y = 0))

« Equal false negative rates across groups
— False negative rate = P =0ly=1)

« Calibrated probabilities produced by classifier

— Among people classified Y=1 with probability p, a fraction p of
them do have Y=1

["On Fairness and Calibration”, Pleiss et al, 2017]



