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Q&A

Q: Why don’t my entropy calculations match
those on the slides?

A: H(Y)is conventionally reported in “bits” and
computed using log base 2.
e.g., H(Y) = - P(Y=0) log,P(Y=0) - P(Y=1) log,P(Y=1)

Q: Why is entropy based on a sum of p(.) log p(.)
terms?

A: We don’t have time for a full treatment of why
it has to be this, but we can develop the right
intuition with a few examples...



Q&A

- How do we define a distance function when
the features are categorical (e.g. weather
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to
numeric features (e.g. binary)
Step 2: Select an appropriate distance function
(e.g. Hamming distance)



Reminders

* Homework 2: Decision Trees
— Out: Wed, Feb. 10
— Due: , Feb. 22 at 11:59pm

* Today’s Poll:

— http://poll.mlcourse.org

— fill out first two questions about HW1



http://poll.mlcourse.org/

Moss Cheat Checker



What is Moss?

* Moss (Measure Of Software Similarity): is an
automatic system for determining the similarity
of programs. To date, the main application of
Moss has been in detecting plagiarism in
programming classes.

* Moss reports:
— The Andrew IDs associated with the file submissions
— The number of lines matched
— The percent lines matched

— Color coded submissions where similarities are
found




What is Moss?

At first glance, the submissions may look different

import r t

-------------

continue

jef isOrdered if

return wor



What is Moss?
Moss can quickly find the similarities



DECISION BOUNDARIES



Decision Boundary Example

Dataset: outputs {+,}; Features x, and x,

In-Class Exercise

Question:

Question:

A. Can a k-Nearest Neighbor classifier s o co :
with k=1 achieve zero training error A. Cana De.:a.swn Tree class.lfler achieve
on this dataset? zero training error on this dataset?

B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?

A A
*2 + + X3 + +
+ +
+ - + T + - + -+
R T 4+
> >




k-Nearest Neighbors

Whiteboard:

— Decision Tree boundary with continuous
features



KNN ON FISHER IRIS DATA



Sepal Sepal Petal Petal
Length Width Length Width

© O O

N

4.9
5.3
4.9
5.7
6.3
6.7

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Species Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
1 6.3

- O O O

—_—

1 6.7

3.0
3.6
3.7
2.4
2.8
3-3
3.0

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set
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sepal length
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KNN on Fisher Iris Data

. =

6 7

sepal width

18



KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 - | i I I I
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4.5 -

4.0 -
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3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)
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15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform"')
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KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform"')
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KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform"')
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KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform')
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform"')

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 - | i I I I
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KNN ON GAUSSIAN DATA



KNN on Gaussian Data
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KNN on Gaussian Data

- Classification with KNN (k = 1, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 2, weights = ‘uniform')

46



KNN on Gaussian Data

- Classification with KNN (k = 3, weights = ‘uniform')

47



KNN on Gaussian Data

- Classification with KNN (k = 4, weights = 'uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 5, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 9, weights = ‘uniform')
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KNN on Gaussian Data

‘uniform')

Is=

= 16, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')

Is=

= 25, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')

Is=

= 36, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')

Is=

49, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')

Is=

64, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')

Is=

81, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 100, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

, weigh

=121

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

, weigh

= 144

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 169, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 196, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 225, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 256, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 289, weigh

(k

Classification with KNN
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KNN on Gaussian Data

= 'uniform’)

ts

(k = 400, weigh

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 529, weigh

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform?)

ts

= 576, weigh

(k

Classification with KNN
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K-NEAREST NEIGHBORS



Questions

* How could k-Nearest Neighbors (KNN) be
applied to regression?

* Can we do better than majority vote? (e.g.
distance-weighted KNN)

* Where does the Cover & Hart (1967) Bayes
error rate bound come from?



KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate
it to feature scale [a la. CIML]

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

* State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new" k-NN learning algorithms capable of dealing
with even k



MODEL SELECTION



Model Selection

WARNING:

* [n some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.



Model Selection

Statistics

Def: a model defines the data
eneration process (i.e. a set or
amily of parametric probability

distributions)

Def: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning (aka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



MODEL SELECTION



Model Selection

WARNING:

* [n some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.



Model Selection

Statistics

Def: a model defines the data
eneration process (i.e. a set or
amily of parametric probability

distributions)

Def: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning (aka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: Decision Tree

model = set of all possible
trees, possibly restricted by
some hyperparameters (e.g.
max depth)

parameters = structure of a
specific decision tree

learning algorithm = ID3,
CART, etc.

hyperparameters = max-
depth, threshold for splitting
criterion, etc.

Machine Learning

* Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

* Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

* Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

* Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible
nearest neighbors classifiers

parameters = none
(KNN is an instance-based or
non-parametric method)

learning algorithm = for naive
setting, just storing the data

hyperparameters = k, the
number of neighbors to
consider

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: Perceptron

model = set of all linear
separators

parameters = vector of
weights (one for each
feature)

learning algorithm = mistake
based updates to the
parameters

hyperparameters = none
(unless using some variant
such as averaged perceptron)

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Statistics Machine Learning

* Def: a model defines the data * Def: (loosely) a model defines the

eneration pr : pace over which
am||y of parar If “Iearnlng” IS a” abOUt orms its search

distributions) p|ck|ng the best
arameters are the
e Def: model p\] parameters how do we |esor structure
values that gi piCk the best he learning algorithm

particular prot to a hypothesis

?
distribution in hyperparameters.

ning algorithm

* Def: learni ka. estimation) is CeTines the e SEEeEr
the PFO@inding . over the hyp sis space (i.e.

: search for goo amet
parame that best fit the data & ers)

* Def: hyperparameters are the
* Def: hyperparameters are the tunable aspects of the model, that

parameters of a prior the learning algorithm does not
distribution over parameters select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose
the “best” model from among a set of candidates
— Def: hyperparameter optimization is the process by
which we choose the “best” hyperparameters from
among a set of candidates (could be called a special
case of model selection)

* Both assume access to a function capable of
measuring the quality of a model

* Both are typically done “outside” the main training
algorithm — typically training is treated as a black
box



Experimental Design

Training training dataset * best model parameters  We pick the best model

h t parameters by learning on the
yperparameters training dataset for a fixed set

of hyperparameters

Hyperparameter training dataset * best hyperparameters We pick the best

. . . . . hyperparameters by learning
Optimization validation dataset By

evaluating error on the
validation error

Testing test dataset  testerror We evaluate a hypothesis

. . corresponding to a decision
hypothesis (i.e. fixed rule with fixed model

model parameters) parameters on a test dataset
to obtain test error
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Special Cases of k-NN

k=1: Nearest Neighbor k=N: Majority Vote
. ’

85



Example of Hyperparameter Opt.

Whiteboard:

— Special cases of k-Nearest Neighbors
— Choosing k with validation data

— Choosing k with cross-validation



Cross-Validation

Cross validation is a method of estimating loss on held out data
Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

Fold 1

Fold 2

Fold 3

Algorithm:
Divide data into folds (e.g. 4)

1. Train on folds {1,2,3} and
predict on {4}

2. Train on folds {1,2,4} and
predict on {3}

3. Train on folds {1,3,4} and
predict on {2}

4. Train on folds {2,3,4} and
predict on {1}

Concatenate all the predictions
and evaluate loss (almost
equivalent to averaging loss

] Fold 4
Definition:

N-fold cross validation = cross validation with N folds

hover the folds)
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Training

Hyperparameter
Optimization

Cross-Validation

Testing

Experimental Design

training dataset
hyperparameters

training dataset
validation dataset

training dataset
validation dataset

test dataset
hypothesis (i.e. fixed
model parameters)

best model parameters

best hyperparameters

cross-validation error

test error

We pick the best model
parameters by learning on the
training dataset for a fixed set
of hyperparameters

We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

We estimate the error on held
out data by repeatedly training

on N-1 folds and predicting on
the held-out fold

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error
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Experimental Design

Yes.
A:

Let's assume that {train-original} is the original training data, and {test} is the
provided test dataset.

1. Split {train-original} into {train-subset} and {validation}.

2. Pick the hyperparameters that when training on {train-subset} give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.

3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} U {validation}.

4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:

1. Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.
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Classification with KNN (k = 1, weights = 'uniform')
- 5.0 -
B o 4.5 -
-_—
. PY 4.0 -
B 3.5-
3.0 -

--------
--------

Train / Test Errors with k-NN

0n7- @ train
v validation

error

10 10° 10-

Fisher Iris Data: varying the value of k

Classification with KNN (k = 144, weights = 'uniform’')
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 Classification with KNN (k = 1, weights = 'uniform’)
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Gaussian Data: varying the value of k

Classification with KNN (k = 81, weights = 'uniform’)
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Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter

optimization: (to talk about later)
e Grid search
« Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:

— Model selection [ hyperparameter optimization
is just another form of learning



Hyperparameter Optimization

Setting: suppose we have hyperparameters «, 3, and x and
we wish to pick the “best” values for each one

Algorithm 1: Grid Search
— Pick a set of values for each hyperparameter
«€f{a,a,..,a},BE{b,b,..,b},andx €{c,c,, ..., ¢}
— Run a grid search

fora € {a, a,, ..., a.}
forBe{b,b,,...,b.}
fory € {c" Cyy veey Cte
0= train(Dtrain; a, (37 X)
error = predict(D,zjidations ©)

— return a, 3, and x with lowest validation error



Hyperparameter Optimization

Setting: suppose we have hyperparameters a, 3, and x and
we wish to pick the “best” values for each one




Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyparameters
than random search.

Answer:



Model Selection Learning Objectives

You should be able to...

* Plan an experiment that uses training, validation, and
test datasets to predict the performance of a
classifier on unseen data (without cheating)

* Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test
error, and (5) true error

* For agiven learning technique, identify the model,
earning algorithm, parameters, and hyperparamters

* Define "instance-based learning" or "nonparametric
methods"

* Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters




THE PERCEPTRON ALGORITHM



Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt...and the

yearis 1957

A-UNIT INNIBITING INPUTS
SENSORY WPUTS FROM R-UNITS 10
ramoy Y TR raace RESPONSE
INTEGRATOR  uNITs

IIIIIIIIIII

FIGURE 5§
DESIGN OF TYPICAL UNITS
100



Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt... and the
yearis 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I1.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron’s eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.




Linear Models for Classification

Key idea: Try to learn

this hyperplane directly
=OOITIE Eleaeh = yDirectly modeling the
* We’ll see a number of =~
commonly used Linear hyp.erplane W?L'Id =SS
Classifiers l -~ ldecision function:
* These include: = -
— Perceptron X h(X) — Sign(g X)

— Logistic Regression
— Naive Bayes (under
certain conditions) ' for:

— Support Vector
Machines (S {_17 _I_l}

r pr—



Geometry

In-Class Exercise Answer Here:

Draw a picture of the
region corresponding
to:

w11 + wexre +b >0

L2

A

where w; = 2,wy = 3,b =16

Draw the vector
w=[w, w,]



