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Q&A
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Q: Why don’t my entropy calculations match 
those on the slides?

A: H(Y) is conventionally reported in “bits” and 
computed using log base 2. 
e.g., H(Y) = - P(Y=0) log2P(Y=0) - P(Y=1) log2P(Y=1)

Q: Why is entropy based on a sum of p(.) log p(.) 
terms?

A: We don’t have time for a full treatment of why 
it has to be this, but we can develop the right 
intuition with a few examples…



Q&A
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Q: How do we define a distance function when 
the features are categorical (e.g. weather 
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to 
numeric features (e.g. binary)
Step 2: Select an appropriate distance function 
(e.g. Hamming distance)



Reminders

• Homework 2: Decision Trees
– Out: Wed, Feb. 10
– Due: Mon, Feb. 22 at 11:59pm

• Today’s Poll: 
– http://poll.mlcourse.org
– fill out first two questions about HW1
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http://poll.mlcourse.org/


Moss Cheat Checker



What is Moss?
• Moss (Measure Of Software Similarity): is an 

automatic system for determining the similarity 
of programs.  To date, the main application of 
Moss has been in detecting plagiarism in 
programming classes.

• Moss reports:
– The Andrew IDs associated with the file submissions
– The number of lines matched
– The percent lines matched
– Color coded submissions where similarities are 

found



What is Moss?

At first glance, the submissions may look different



What is Moss?
Moss can quickly find the similarities



DECISION BOUNDARIES
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Decision Boundary Example

11

In-Class Exercise

Dataset: Outputs {+,-}; Features x1 and x2

Question:
A. Can a k-Nearest Neighbor classifier 

with k=1 achieve zero training error 
on this dataset?

B. If ‘Yes’, draw the learned decision 
boundary. If ‘No’, why not?

Question:
A. Can a Decision Tree classifier achieve 

zero training error on this dataset?
B. If ‘Yes’, draw the learned decision 

boundary. If ‘No’, why not?

x1

x2

x1

x2



k-Nearest Neighbors

Whiteboard:
– Decision Tree boundary with continuous 

features

12



KNN ON FISHER IRIS DATA
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Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

petal

sepal



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Nearest Neighbor



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data

28



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Majority Vote



KNN ON GAUSSIAN DATA
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data

66



KNN on Gaussian Data
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K-NEAREST NEIGHBORS
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Questions

• How could k-Nearest Neighbors (KNN) be 
applied to regression?

• Can we do better than majority vote? (e.g. 
distance-weighted KNN)

• Where does the Cover & Hart (1967) Bayes 
error rate bound come from?
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KNN Learning Objectives
You should be able to…
• Describe a dataset as points in a high dimensional space 

[CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate 

it to feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm 

(compare k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a 

nearest neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing 

with even k
• Explain computational and geometric examples of the 

curse of dimensionality
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MODEL SELECTION
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Model Selection

WARNING: 
• In some sense, our discussion of model 

selection is premature. 
• The models we have considered thus far are 

fairly simple.
• The models and the many decisions available 

to the data scientist wielding them will grow 
to be much more complex than what we’ve 
seen so far.
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Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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MODEL SELECTION
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Model Selection

WARNING: 
• In some sense, our discussion of model 

selection is premature. 
• The models we have considered thus far are 

fairly simple.
• The models and the many decisions available 

to the data scientist wielding them will grow 
to be much more complex than what we’ve 
seen so far.
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Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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• model = set of all possible 
trees, possibly restricted by 
some hyperparameters (e.g. 
max depth)

• parameters = structure of a 
specific decision tree

• learning algorithm = ID3, 
CART, etc.

• hyperparameters = max-
depth, threshold for splitting 
criterion, etc.

Example: Decision Tree



Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select

79

• model = set of all possible 
nearest neighbors classifiers

• parameters = none 
(KNN is an instance-based or 
non-parametric method)

• learning algorithm = for naïve 
setting, just storing the data

• hyperparameters = k, the 
number of neighbors to 
consider

Example: k-Nearest Neighbors



Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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• model = set of all linear 
separators

• parameters = vector of 
weights (one for each 
feature)

• learning algorithm = mistake 
based updates to the 
parameters

• hyperparameters = none 
(unless using some variant 
such as averaged perceptron)

Example: Perceptron



Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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If “learning” is all about 
picking the best 

parameters how do we 
pick the best 

hyperparameters?



Model Selection
• Two very similar definitions:
– Def: model selection is the process by which we choose 

the “best” model from among a set of candidates
– Def: hyperparameter optimization is the process by 

which we choose the “best” hyperparameters from 
among a set of candidates (could be called a special 
case of model selection) 

• Both assume access to a function capable of 
measuring the quality of a model

• Both are typically done “outside” the main training 
algorithm --- typically training is treated as a black 
box
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Experimental Design
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Input Output Notes
Training • training dataset 

• hyperparameters
• best model parameters We pick the best model 

parameters by learning on the 
training dataset for a fixed set 
of hyperparameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best hyperparameters We pick the best 
hyperparameters by learning 
on the training data and 
evaluating error on the 
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held 
out data by repeatedly training 
on N-1 folds and predicting on 
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed 

model parameters)

• test error We evaluate a hypothesis 
corresponding to a decision 
rule with fixed model 
parameters on a test dataset 
to obtain test error



Special Cases of k-NN

k=1: Nearest Neighbor k=N: Majority Vote
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Example of Hyperparameter Opt.

Whiteboard:
– Special cases of k-Nearest Neighbors
– Choosing k with validation data
– Choosing k with cross-validation
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Cross-Validation
Cross validation is a method of estimating loss on held out data

Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many! 
(Error is more stable. Slower computation.)
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D = y(1)

y(2)

y(N)

x(1)

x(2)

x(N)

Fold 1

Fold 2

Fold 3

Fold 4

Algorithm: 
Divide data into folds (e.g. 4)
1. Train on folds {1,2,3} and 

predict on {4}
2. Train on folds {1,2,4} and 

predict on {3}
3. Train on folds {1,3,4} and 

predict on {2}
4. Train on folds {2,3,4} and 

predict on {1}
Concatenate all the predictions 
and evaluate loss (almost
equivalent to averaging loss 
over the folds)

Definition: 
N-fold cross validation = cross validation with N folds



Experimental Design
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Input Output Notes
Training • training dataset 

• hyperparameters
• best model parameters We pick the best model 

parameters by learning on the 
training dataset for a fixed set 
of hyperparameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best hyperparameters We pick the best 
hyperparameters by learning 
on the training data and 
evaluating error on the 
validation error

Cross-Validation • training dataset
• validation dataset

• cross-validation error We estimate the error on held 
out data by repeatedly training 
on N-1 folds and predicting on 
the held-out fold

Testing • test dataset
• hypothesis (i.e. fixed 

model parameters)

• test error We evaluate a hypothesis 
corresponding to a decision 
rule with fixed model 
parameters on a test dataset 
to obtain test error



Experimental Design
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Q: We pick the best hyperparameters by learning on the training data and 
evaluating error on the validation error. For our final model, should we then 
learn from training + validation?

A: Yes.

Let's assume that {train-original} is the original training data, and {test} is the 
provided test dataset.

1. Split {train-original} into {train-subset} and {validation}.
2. Pick the hyperparameters that when training on {train-subset} give the lowest 

error on {validation}. Call these hyperparameters {best-hyper}.
3. Retrain a new model using {best-hyper} on {train-original} = {train-

subset} ∪ {validation}.
4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:
1. Pick the hyperparameters that give the lowest cross-validation error on {train-

original}. Call these hyperparameters {best-hyper}.



k-NN:  Choosing k

Fisher Iris Data: varying the value of k
90



k-NN:  Choosing k

Gaussian Data: varying the value of k
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Model Selection
WARNING (again):
– This section is only scratching the surface!
– Lots of methods for hyperparameter

optimization: (to talk about later)
• Grid search
• Random search
• Bayesian optimization
• Graduate-student descent
• …

Main Takeaway: 
– Model selection / hyperparameter optimization 

is just another form of learning
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Hyperparameter Optimization
Setting: suppose we have hyperparameters !, β, and χ and 
we wish to pick the “best” values for each one

Algorithm 1: Grid Search
– Pick a set of values for each hyperparameter
! ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn} 

– Run a grid search

for ! ∈ {a1, a2, …, an}:
for β ∈ {b1, b2, …, bn}:

for χ ∈ {c1, c2, …, cn}:
θ = train(Dtrain; !, β, χ)
error = predict(Dvalidation; θ)

– return !, β, and χ with lowest validation error
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Hyperparameter Optimization

Setting: suppose we have hyperparameters !, β, and χ and 
we wish to pick the “best” values for each one

Algorithm 2: Random Search
– Pick a range of values for each parameter
! ∈ {a1, a2, …, an}, β ∈ {b1, b2, …, bn}, and χ ∈ {c1, c2, …, cn} 

– Run a random search

for t = 1, 2, …, T:
sample ! uniformly from {a1, a2, …, an}
sample β uniformly from {b1, b2, …, bn}
sample χ uniformly from {c1, c2, …, cn}
θ = train(Dtrain; !, β, χ)
error = predict(Dvalidation; θ)

– return !, β, and χ with lowest validation error
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Hyperparameter Optimization
Question:
True or False: given a finite amount of computation time, grid 
search is more likely to find good values for hyparameters
than random search.
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Answer:



Model Selection Learning Objectives

You should be able to…
• Plan an experiment that uses training, validation, and 

test datasets to predict the performance of a 
classifier on unseen data (without cheating)

• Explain the difference between (1) training error, (2) 
validation error, (3) cross-validation error, (4) test 
error, and (5) true error

• For a given learning technique, identify the model, 
learning algorithm, parameters, and hyperparamters

• Define "instance-based learning" or "nonparametric 
methods"

• Select an appropriate algorithm for optimizing (aka. 
learning) hyperparameters
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THE PERCEPTRON ALGORITHM
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Perceptron: History
Imagine you are trying to build a new machine learning 
technique… your name is Frank Rosenblatt…and the 
year is 1957
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Perceptron: History
Imagine you are trying to build a new machine learning 
technique… your name is Frank Rosenblatt…and the 
year is 1957
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = ����(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



Geometry

In-Class Exercise
Draw a picture of the 
region corresponding 
to:

Draw the vector
w = [w1, w2]
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Answer Here:


