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Reminders

• Homework 2: Decision Trees
– Out: Wed, Feb. 10
– Due: Mon, Feb. 22 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Feb. 22 
– Due: Mon, Mar. 01 at 11:59pm
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THE PERCEPTRON ALGORITHM
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Perceptron: History
Imagine you are trying to build a new machine learning 
technique… your name is Frank Rosenblatt…and the 
year is 1957
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = ����(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



Geometry

In-Class Exercise
Draw a picture of the 
region corresponding 
to:

Draw the vector
w = [w1, w2]
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Answer Here:



Visualizing Dot-Products

Whiteboard:
– definition of dot product
– definition of L2 norm
– definition of orthogonality
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Vector Projection
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Question: 
Which of the following is the projection of a vector a onto a 
vector b?



Visualizing Dot-Products

Whiteboard:
– vector projection
– hyperplane definition
– half-space definitions
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = ����(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



Online vs. Batch Learning

Batch Learning
Learn from all the examples at 
once

Online Learning
Gradually learn as each example 
is received
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Online Learning
Examples
1. Stock market prediction (what will the value 

of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam 

and regular mail changes over time, but the 
target function stays fixed - last year's spam 
still looks like spam)

3. Recommendation systems. Examples: 
recommending movies; predicting whether a 
user will be interested in a new news article

4. Ad placement in a new market
16
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Online Learning
For i = 1, 2, 3, …:
• Receive an unlabeled instance x(i)

• Predict y’ = hθ(x(i))
• Receive true label y(i)

• Suffer loss if a mistake was made, y’ ≠ y(i)

• Update parameters θ

Goal:
• Minimize the number of mistakes
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Perceptron

Whiteboard:
– (Online) Perceptron Algorithm
– Hypothesis class for Perceptron
– 2D Example of Perceptron
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Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

%& = (0,0)
%+ = %& − −1,2 = (1, −2)
%, = %+ + 1,1 = (2, −1)
%. = %, − −1,−2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)
§ Set t=1, start with all-zeroes weight vector %&.
§ Given example 0, predict positive iff %1 ⋅ 0 ≥ 0.
§ On a mistake, update as follows: 

• Mistake on positive, update %15& ← %1 + 0
• Mistake on negative, update %15& ← %1 − 0

1,0 +
1,1 +

−1,0 −
−1, −2 −
1, −1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan



THE PERCEPTRON ALGORITHM
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Intercept Term
Q: Why do we need an 
intercept term?

A: It shifts the decision 
boundary off the origin
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w

b < 0

b = 0

b > 0

Q: Why do we add / subtract 1.0 
to the intercept term during 
Perceptron training?
A: Two cases
1. Increasing b shifts the 

decision boundary 
towards the negative side

2. Decreasing b shifts the 
decision boundary 
towards the positive side



Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important 

(and should be corrected)
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Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1): 

w

Hyperplane (Definition 2): 

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one to 
get x’!

1
’

’ ’

1

1



(Online) Perceptron Algorithm
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Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) ����(a) =

�
1, �� a � 0

�1, ���������
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(Online) Perceptron Algorithm
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Learning:

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) ����(a) =

�
1, �� a � 0

�1, ���������
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(Online) Perceptron Algorithm
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Learning:

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) ����(a) =

�
1, �� a � 0

�1, ���������

Implementation Trick: same 
behavior as our “add on 

positive mistake and 
subtract on negative 

mistake” version, because 
y(i) takes care of the sign



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

��������� ͕ ���������� �������� ��������� ȋ�����Ȍ

͕ǣ ��������� �ĊėĈĊĕęėĔēȋD = {(t(1), y(1)), . . . , (t(N), y(N))}Ȍ
͖ǣ � � 0 � ���������� ����������
͗ǣ ����� ��� ��������� ��
͘ǣ ��� i � {1, 2, . . . , N} �� � 	�� ���� �������
͙ǣ ŷ � ����(�T t(i)) � �������
͚ǣ �� ŷ �= y(i) ���� � �� �������
͛ǣ � � � + y(i)t(i) � ������ ����������
͜ǣ ������ �



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch 
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a 
so-called Hinge Loss on a linear separator



Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during 

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way 

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially 

large set
– Mistake bound does not depend on the size of that set
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Perceptron Exercises
Question:
The parameter vector w learned by the 
Perceptron algorithm can be written as 
a linear combination of the feature 
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with 
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

31



ANALYSIS OF PERCEPTRON
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Geometric Margin
Definition: The margin of example ! w.r.t. a linear sep." is the 
distance from ! to the plane " ⋅ ! = 0 (or the negative if on wrong side)

!&
w

Margin of positive example !&

!'

Margin of negative example !'

Slide from Nina Balcan



Geometric Margin

Definition: The margin !" of a set of examples # wrt a linear 
separator $ is the smallest margin over points % ∈ #.
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Definition: The margin of example % w.r.t. a linear sep.$ is the 
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)
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Definition: The margin ! of a set of examples " is the maximum !#
over all linear separators $.

Geometric Margin

Definition: The margin !# of a set of examples " wrt a linear 
separator $ is the smallest margin over points % ∈ ".

Definition: The margin of example % w.r.t. a linear sep.$ is the 
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)

Slide from Nina Balcan



Linear Separability
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Def: For a binary classification problem, a set of examples !
is linearly separable if there exists a linear decision boundary 
that can separate the points
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Analysis: Perceptron
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Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

��������ǣ �� ���� ��� ������ � ��� ��� ������ ������ � ���� ��
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Analysis: Perceptron
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(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
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��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



Perceptron Exercises
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Question:
Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron 
algorithm does not suffer from 
overfitting because it does not 
have any hyperparameters that 
could be over-tuned on the 
training data.

A. True
B. False
C. True and False


