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Reminders

* Homework 2: Decision Trees
— Out: Wed, Feb. 10
— Due: , Feb. 22 at 11:59pm

* Homework 3: KNN, Perceptron, Lin.Reg.

— Out: Mon, Feb. 22
— Due: Mon, Mar. 01 at 11:59pm




ANALYSIS OF PERCEPTRON



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Margin of positive example x4

Margin of negative example x,

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.
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Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,,
over all linear separators w.

Slide from Nina Balcan



Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points

________________________________________________________________________



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/+)?* mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

- —
- S

XN Rt
Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

e e - =



Analysis: Perceptron

Figure from Nina Balcan



Common

Analysis: Percept Misunderstanding:

: The radius is
Perceptron Mistake Boun centered at the

Theorem 0.1 (Block (1962), Novikoff (1{ origin, not at the
Given dataset: D = {(x(),y®)} ¥ center of the
Suppose: pOIntS.

1. Finite size inputs: ||z(|| < R
2. Linearly separable data: 30@™ and~y > 0Os.t. ||0"|| =
1and y) (0" - x()) > ~, Vi
Then: The number of mistakes made by the Perceptron

- ==

algorithm on this dataset is 2R

k< (R/v)®




Analysis: Perceptron




Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
1. Finitesizeinputs: ||| < R !
2. Linearly separable data: 30 s.t. ||0*||] = 1and |

\

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1),y(M), (x() 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y(D (0% . x()) < 0 then > If mistake
5 g+ o gk) 4 (D)% (@) > Update parameters
6 E+—k+1
7 return 6




Analysis: Perceptron
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Analysis: Perceptron

What if the data is not linearly separable?

Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire (1999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

Theorem?2. Let{((X1, y1), ..., Xm, Ym)) be asequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = />, dl.z. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y




Perceptron Exercises

Question:

Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False



Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [ subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are

linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction



Perceptron Learning Objectives

You should be able to...

Explain the difference between online learning and
batch learning

Implement the perceptron algorithm for binary
classification [CIML]

Determine whether the perceptron algorithm will
converge based on properties of the dataset, and
the limitations of the convergence guarantees

Describe the inductive bias of perceptron and the
imitations of linear models

Draw the decision boundary of a linear model
dentify whether a dataset is linearly separable or not
Defend the use of a bias term in perceptron




REGRESSION



Goal:

Example Applications:

Regression

Given a training dataset of pairs
(x,y) where

* Xisavector

e yisascalar

Learn a function (aka. curve or line)
y’ = h(x) that best fits the training
data

Stock price prediction
Forecasting epidemics
Speech synthesis

Generation of images (e.g. Deep
Dream)

Predicting the number of tourists
on Machu Picchu on a given day

Weighted %ILI

National wilLl Forecast

Epidemiological Week




National wiLl Forecast B National wiLl Forecast

Regression 1 ¥

Example Application:
Forecasting Epidemics

* Input features, x: ~
attributes of the

6

Weighted %ILI
4

(o PRGN OISO SNPGRS O s s e
. : 21 29 37 45 1 9 17 21 29 37 45 1 9 17
e p l d emicC Epidemiological Week Epidemiological Week
. [ ]
OUtPUt) y’ c National wiLl Forecast D National wiLl Forecast

Weighted %ILI, °1 o
prevalence of the
disease

ogv { |\/l
* Setting: observe j I\
past prevalence to N \_// 3 \// R

predict future

g ———y——————— O pryrpreprr———————
21 29 37 45 1 9 17 21 29 37 45 1 9 17
p reva l ence Epidemiological Week Epidemiological Week
CDC Baseline
Observed wiLl

C Future wiLl
—— Mean Prediction
95% Pointwise Bands
10 Posterior Draws

Fig 2. 2013-2014 national forecast, retrospectively, using the final revisions of wiLl values, usin§1
Figure from Brooks et al. (201 5) revised wiLI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.



Regression

Example: Dataset with only
one feature x and one scalar
outputy

Q: What is the function that
best fits these points?



K-NEAREST NEIGHBOR
REGRESSION



K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

k=1 Nearest Neighbor
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
its 'y

k=2 Nearest Neighbor Distance
Weighted Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values



DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification

B
/\
A A
/\1 (/\
& C C
/N 7\
+ + +

Decision Tree for Regression

B
/\
A A
/\j ?/\
/5 21 C C




Decision Tree Regression

Dataset for Regression Decision Tree for Regression
{47173)775)6)8)9}
4 1 0 0 B
0 1
1 1 0 1 {4,1,3,7}/\3{5,6,8;9}
3 1 0 o A A
7] 0 1 {7} {41,3} 16} {5,8,9]
5 1 1 0 / 2.6 6 C
/\
6 o 7 1 {58}/ \{9]
8 1 1 0 6.5 9
9 1 1 1 During learning, choose the attribute that

minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)



LINEAR FUNCTIONS, RESIDUALS,
AND MEAN SQUARED ERROR



Regression Problems

Chalkboard

— Definition of Regression
— Linear functions
— Linear function vs. linear decision boundary

— Residuals
— Mean squared error



OPTIMIZATION FOR ML



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)

44



min vs. argmin

v¥* = min, f(x)

x* = argmin, f(x)

45



Notation Trick:
Folding in the Intercept Term

xl
‘ 0
hwp(X) =wlix+b

)

he (X’) — OTX,

| T
1,21,22,...,TM]

- T
b, w1, ..., W]

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 47



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : he(x) = 87x,0 ¢ RM}







Lantern Riddles:

1.

Riddle: AR & = A S K,
2R, A EEFGK B,

Hint: (36— H % H &)

Answer: H J&

. Riddle: I

Hint: Gl 1)
Answer: {EA B

. Riddles: R EKIEBHA’

Hint: ji 15
Answer: JEFI{E

# of riddles solved

age (years)




Contour Plots

Contour Plots
1. Each level curve labeled

iR vl [E J(©)=1J(8, 6,)=(10(6,-0.5))*+ (6(6, - 0.4))?
. q 1.
2. Value label indicates the 0 ]
value of the function for 000
all points lying on that .
level curve '
3. Just like a topographical
map, but for a function 064 I S e
I 2 5 Y
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Optimization by Random Guessing

J =) = —0.5)) —0.4))?
Optimization Method #o: (6)=J(8,, 8,) = (10(8, - 0.5)) + (6(8, - 0.4))

Random Guessing v 0.000
1.  Pickarandom 6
2. Evaluate J(0) ]
3. Repeat steps 1and 2 many
times 0-61 : :

4. Return 6 that gives 0, |[¢

O

S
Oj6

009

000 0¢
c?7

0005t
ani

UUU
000
15

20

smallest J(0) 0.4 -

S
S
S

0.2

0.0 Y T f
0.0 0.2 0.4 0.8 1.0
0,

t e1 62 J(e17 62)
1| 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 04 1.0
4 | 0.9 | 0.7 19.2 >




Optimization by Random Guessing

J(0)=J(8,,8,) = = (s —67x"))’
Optimization Method #o: (8)=J )=~ ;(y )

Random Guessing B 0.000
1.  Pickarandom©
2. Evaluate J() %]
3. Repeat steps 1and 2 many
times 0.6 - § :

4. Return 0 that gives 0, o

@)

S
Oi6

000 0¢
c?7

0005t
ani

UUU
000

20

smallest J(0)

0.4 1

S
S
S

For Linear Regression:

* objective function is Mean
Squared Error (MSE)

« MSE =J(w,Db) N 0.0

0.2 1

0.0 0.2 0.8 1.0

= J(ev 0,) = %Zl <y(i) _eTx(i)))z - 6,
* contour plot: each line labeled with
MSE - lower means a better fit t| 9, 5, | J(6,6,)
.. 1| 0.2 | 0.2 10.4
* minimum corresponds to > ] 03 | o7 2
parameters (w,b) = (8,, 6,) that .6 ' '
best fit some training dataset 3|0 0.4 1.0
4 | 0.9 | 0.7 19.2




1.
2.

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random ©
Evaluate J(0)

Repeat steps 1 and 2 many
times

4. Return 0 that gives

smallest J(0)

y=h*(x)
(unknown)
z/ .
Ppr<d
o i :
2
, [

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(),y()

want h(x; ) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions



Linear Regression by Rand. Guessing

J(0)=1J(8,8,) = + 3 (s - 67x®))"
Optimization Method #o: ()= )=~ E(y )

Random Guessing v 0.000
1.  Pickarandom©
2. Evaluate J(0) ]
3. Repeat steps 1and 2 many =
times 0.6 _g S 8 Lg oo N
4. Return 0 that gives 0, fs] 775
smallest J(0) 0.4 O
y = h*(x) S
R h(x; 6(4)) (unknown) | -
h(x; 60))
0'oo.o 0.2 0.4 0.6 0.8 1.0
> 0,
, t e1 ez J(91, ez)
4 o 1| 0.2 | 0.2 10.4
/ h(x; ) p) 0.3 0.7 7.2
o 3| 0.6 | 0.4 1.0
~ > 4| 0.9 | 0.7 19.2
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OPTIMIZATION METHOD #1:
GRADIENT DESCENT



Optimization for ML
Chalkboard

— Unconstrained optimization
— Derivatives
— Gradient





https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/
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https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/
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1.0

0.8
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0.4

0.2

Gradients

These are the gradients that
Gradient Ascent would follow.
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(Negative) Gradients
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These are the negative gradients that

64

Gradient Descent would follow.
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Shown are the paths that Gradient Descent
would follow if it were making infinitesimally
small steps.
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