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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Feb. 22
— Due: Mon, Mar. 01 at 11:59pm

 Practice for Exam

— Mock Exam 1

* Wed, Mar. 03 at 7:00pm - 9:00pm

* See (@261 for participation point details
— Practice Problems 1A (Gradescope)

— Practice Problems 1B (PDF)

* Midterm Exam 1
— Tue, Feb. 18, 7:00pm - 9:00pm



https://piazza.com/class/kjvu0xh54r72d1?cid=261

MIDTERM EXAM LOGISTICS



Midterm Exam

 Time/Location

— Time: Saturday Exam
Saturday, March 6, at 10:30am - 12:30pm EST

— Location: We will contact you with additional details about how to join the
appropriate Zoom meeting.
— Seats: There will be assigned Zoom rooms. Please arrive online early.

— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 - Lecture 8

— Format of questions:
* Multiple choice
* True / False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

—No-electronic devices



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Participate in the Mock Exam

— Review exam practice problems
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Midterm 1

* Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions




Sample Questions




Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D® and D® where DO = {(z\", y{"), .., @, yi")}
and D@ = {(? 4, . (@, y)} such that 2" € R%, 2/* € R%. Suppose d; > ds

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.



Sample Questions
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(a) OM nnd new rogrossion Hie, (B) OM and new rogression Enes. (€) Ol ned now regression lines.




Sample Questions

(2) OM nnd new rogrossion Hie, (B) OM and new rogression Rnes. (¢) OM ned now regression lines.




Sample Questions

(a) OM nnd new rogrossion Hie, (B) OM and new rogression Enes. (€) Ol ned now regression lines.




Sample Questions

]

.' / ol / g /

(a) OM nnd new rogrossion Hie, (B) OM and new rogression Enes. (€) Ol ned now regression lines.




Q&A



Q&A

Q: Is there one recitation timeslot or two for

A:

this class?

Back to just one, i.e. Friday, same time as
lecture.

We tried hosting a Thursday evenin

recitation, but attendance remained around
half a dozen students. So we are not hosting it
anymore.



Q:

A:

Q&A

Why did we focus mostly on the Perceptron mistake

bound for linearly separable data; isn’t that an
unrealistic setting?

Not at all! Even if your data isn’t linearly separable to
begin with, we can often add features to make it so.

mﬂ t Exercise: Add

IPEE D I ® |+ another featurg to
transform this

< > .
+1 il - nonlinearly separable
y P + | @ data into linearly
P P s separable data.




CLOSED FORM SOLUTION FOR
LINEAR REGRESSION



Computational Complexity of OLS

To solve the Ordinary Least Squares
problem we compute

: T -1 T
6 = argmln =N Z (y — (87x(V)))? ( ?(_, ?_(, )~ ( I)(_, x )
i=1 MXxXN NxM MXxN Nx1

= (X'X)"'(xX"Y) M x M Mx1

The resulting shape of the matrices:

Background: Matrix Multiplication Given matrices A and B
e If Aisg x rand Bisr x s, computing AB takes O(grs)
e If A and B are ¢ x g, computing AB takes O(¢?3"3)
e If Aisq x g, computing A~ takes O(¢g*3").

Computational Complexity of OLS:

XTX O(M?2N)

( )~ O(M2373) Linear in # of examples, N
XY O(MN) Polynomial in # of features, M

( )" ) o) @

total O(M?*N + M?*37)



Gradient Descent

Cases to consider gradient descent:

1.

What if we can not find a closed-form
solution?

. What if we can, but it’s inefficient to

compute?

. What if we can, but it’s numerically

unstable to compute?



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:anepochisa
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

e SGD reduces MSE
much more rapidly
than GD

— * For GD /SGD, training

ClosedXorm
(normal

> MSE is initially large
Epochs due to uninformed
initialization



LINEAR REGRESSION: SOLUTION
UNIQUENESS



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

How many
solutions (i.e. sets
of parameters w,b)
are there for the
given dataset?

Y a

Two Points (Case 1)




Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

Y a One Point

How many
solutions (i.e. sets
of parameters w,b)

are there for the
given dataset?



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model

y4  Two Points (Case 2)

trained to minimize ¢
MSE.
How many ¢

solutions (i.e. sets
of parameters w,b)

are there for the
given dataset? Answer:

A:0 B:1 C2 Di+eo



Linear Regression: Uniqueness

Question:
° Consider a °D Y A POintS ona Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,
w,, b) are there X,
for the given /

dataset? X,




Linear Regression: Uniqueness

Question:
° ConS|der a2D Y A POintS ona Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w.,
w,, b) are there
for the given
dataset?
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Linear Regression: Uniqueness

Question:

° Consider a2D Y4 Points on alLine
linear regression
model trained to

minimize MSE |
* How many

solutions (i.e.
sets of
parameters w,,
w,, b) are there

for the given

dataset? X,
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Linear Regression: Uniqueness

To solve the Ordinary Least Squares
problem we compute:

N
3 1 1, . :
0 — = — S 2 (@ — (gTx®Y))2

—arg;nln—Nigzl 2(y (0" x'"))

= (XTX)"}(xXTY)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the
normal equations.

1. If (X' X)is invertible, then there is exactly one
solution.

2. If (X*X)is not invertible, then there are either
no solutions or infinitely many solutions.



Linear Regression: Uniqueness

To solve the Ordinary Least Squares
problem we compute

0 = argmln = — Z (’) HTX(")))2
(XTX) LXTY)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the
normal equations.

1. If (X*X)is invertible, then there is exactly one

SOIUtj‘ﬂon m Invertability of (X'X) is
2. If (X* X)is not equivalent to X being full rank.
no solutions or inf| That s, there is no feature that

is a linear combination of the
other features.
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OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))
0 — 6

1:

2

3: while not converged do
4 00— YVoJ(0O)

5

return 6




Stochastic Gradient Descent (SGD)

We need a per-example objective:

Let J(0) = Zfll J(i)(e)

46




Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 8'")

2 0« 6"

3: while not converged do

4 for i € shuffle({1,2,...,N}) do
5: 0 60 —-7VeJ(0)

6: return & %

-

s%,

——

\
& " L o S S
et 4
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We need a per-example objective:
Let J(0) = i1, JO(6)

In practice, it is common
to implement SGD using
sampling without
replacement (i.e.
shuffle({1,2,... N}), even
though most of the
theory is for sampling
with replacement (i.e.
Uniform({1,2,... N}).







Expectations of Gradients

——
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LINEAR REGRESSION:
PRACTICALITIES



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:anepochisa
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

e SGD reduces MSE
much more rapidly
than GD

— * For GD /SGD, training

ClosedXorm
(normal

> MSE is initially large
Epochs due to uninformed
initialization



Convergence of Optimizers
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SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, }{:
all linear functions in M-dimensional space

H = {he : he(x) = 87x,0 € RM}




Gradient Calculation for Linear Regression

Derivative of J(*(8):
4 J0(9) = __(07‘ O
by,
_ li T )
3 db, (0" x

(i))2

- y“’)’

= (0Tx — y(‘))d%(a"x(‘) — )
k

K
. d .
= (0"x) — y(f))._k. (E :0,'1:?) - y('))
Jj=1

= (0Tx") - y(‘))z::)

Gradient of J(*) ()

Vel () =

En J(i)(a)

a 3;79(9)

i 70)
— (oTx(i) -

y©)x @

[used by SGD]

e
(87X — y®)a{?

(0"x® - y®)z)

T (i i)y (i
(0 x(i) —y('))zg,)-

Derivative of J(0):
i =_(0) = Z J"’(O)

= Z(GTx(i) — y(‘.))xg)

i=1

Gradient of J(@) [used by Gradient Descent]

3§J(0) SN (07x) - y('))x(';
Ja N T (8) _ )l
Vos(0) = | #7O| _ [ X (“. vz

.:m;J(O). 3N (67X — )z |

N
=3 (07x — y)x®
=1
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SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)
«: procedure LMS(D, 6'”)

x 0«0 > Initialize parameters
3:  while not converged do

4 fori € shuffle({1,2,...,N})do

5: g « (07xV) — y0)x® > Compute gradient
6: 0« 0 -g > Update parameters
7: return @

58



GD for Linear Regression

Cradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 9(0))

0 — 6 > Initialize parameters
while not converged do

1:
2
3
4 g — S0 (7% — y)x(®) > Compute gradient
5
6

00 —ng > Update parameters
return 6




Optimization Objectives

You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function



Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

mplement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed




PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y = o*(x®)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*()
Yy~ p*(-[x")

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



Robotic Farming

:
_» Deterministic Probabilistic
i | Classification Is this a picture of | Is this plant
“h (binary output) a wheat kernel? drought resistant?

Regression
(continuous

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?




Bayes Optimal Classifier

Whiteboard
— Bayes Optimal Classifier
— Reducible / irreducible error
— Ex: Bayes Optimal Classifier for 0/1 Loss



Bayes Optimal Classifier

()tlJu‘~““£ iwku’cLajhu - AL\!E‘E;?
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?ciﬁﬂ ‘

L 00s
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MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Maximum Likelihood Estimation
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