
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

09/10/2021

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth and height of trees

• Recursive traversal of trees

– Depth First Search

∗ Pre Order Traversal

∗ Inorder Traversal

∗ Post Order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth of a tree definition

2. Depth of a node definition

3. What is the depth of tree A? What is the depth of node X4 in tree A?

10-301/10-601: Recitation 2 Page 2 of 9 02/12/2021

X1

X2

X4

no yes

X5

no yes

X3

X6

no yes

X7

no yes

yes

ye
s

ye
s no

no

ye
s no

yes

ye
s

ye
s no

no

ye
s no

4. What is the depth of tree B?

X1

no yes

ye
s no

5. What is the depth of tree C? What are the depths of nodes X1 and X5 in tree A?

X1

X2

X4

X6

no yes

yes

no

X3

X5

no yes

no

ye
s

ye
s

ye
s

ye
s no

no

yes

yes

no

ye
s no

yes

6. In class coding and explanation of Depth First Traversal in Python.
Link to the code: https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_
U_-Dfsh4ZQ?usp=sharing

Pre-order, Inorder and Post-order Tree Traversal

https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_U_-Dfsh4ZQ?usp=sharing
https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_U_-Dfsh4ZQ?usp=sharing

10-301/10-601: Recitation 2 Page 3 of 9 02/12/2021

This class represents an individual node

class Node:

def __init__(self,key):

self.left = None

self.right = None

self.val = key

def traversal1(root):

if root is not None:

First recurse on left child

traversal1(root.left)

then recurse on right child

traversal1(root.right)

now print the data of node

print(root.val, "\t",end="")

def traversal2(root):

if root is not None:

First print the data of node

print(root.val, "\t",end="")

Then recurse on left child

traversal2(root.left)

Finally recurse on right child

traversal2(root.right)

def traversal3(root):

if root is not None:

First recur on left child

traversal3(root.left)

then print the data of node

print(root.val, "\t",end="")

now recur on right child

traversal3(root.right)

def build_a_tree():

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

return root

if __name__ == ’__main__’:

root = build_a_tree()

10-301/10-601: Recitation 2 Page 4 of 9 02/12/2021

print ("traversal1 of binary tree is: ")

traversal1(root)

print("\n")

print ("traversal2 of binary tree is: ")

traversal2(root)

print("\n")

print ("traversal3 of binary tree is: ")

traversal3(root)

Code Output

Traversal1 of binary tree is:

Traversal2 of binary tree is

Traversal3 of binary tree is

Now, identify which traversal function is Pre-Order, In-Order, Post-Order DFS respec-
tively :

• traversal1() is

• traversal2() is

• traversal3() is

10-301/10-601: Recitation 2 Page 5 of 9 02/12/2021

2 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(X;Y) = H(Y)−H(Y | X)

Exercises

1. Calculate the entropy of tossing a fair coin.

2. Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.

3. Calculate the entropy of a fair dice roll.

4. When is the mutual information I(X;Y) = 0?

10-301/10-601: Recitation 2 Page 6 of 9 02/12/2021

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no
overcast hot high yes
rain mild high yes
rain cool normal yes
sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

• What is I(Y ;X1)?

• What is I(Y ;X2)? 0.061

• What is I(Y ;X3)? 0.311

• What feature should be split on at the root node?

2. Calculate what the next split should be.

3. Draw the resulting tree.

10-301/10-601: Recitation 2 Page 7 of 9 02/12/2021

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling? What are the inputs and outputs?

2. What are the inputs and outputs at training time? At testing time?

3. At each node of the tree, what do we need to store?

4. What do we need to do at training time?

5. What happens if max depth is 0?

6. What happens if max depth is greater than the number of attributes?

10-301/10-601: Recitation 2 Page 8 of 9 02/12/2021

4 Programming: Debugging w/ Trees

pdb and common commands

• import pdb then pdb.set trace()

• n (next)

• ENTER (repeat previous)

• q (quit)

• p variable (print value)

• c (continue)

• b (breakpoint)

• l (list where you are)

• s (step into subroutine)

• r (continue until the end of the subroutine)

• ! python command

Real Practice

• In this (extremely contrived) example, we will reversing a 2d list in python.

Buggy Code

• add pdb.set trace() before the line that is causing the error

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [[0]*cols]*rows

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

10-301/10-601: Recitation 2 Page 9 of 9 02/12/2021

Buggy Code

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

#counts the number of nonzero values

count = np.count_nonzero(Mat[:,col])

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] == 1

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

	Programming: Tree Structures and Algorithms
	ML Concepts: Mutual Information
	ML Concepts: Construction of Decision Trees
	Programming: Debugging w/ Trees

