
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

09/10/2021

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth and height of trees

• Recursive traversal of trees

– Depth First Search

∗ Pre Order Traversal

∗ Inorder Traversal

∗ Post Order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth of a tree definition
The depth of a tree is th e length (number of edges) of the longest path from a root to
a leaf.

2. Depth of a node definition
The depth of a node is the number of edges between the root and the given node.

3. What is the depth of tree A? What is the depth of node X4 in tree A?

10-301/10-601: Recitation 2 Page 2 of 15 02/12/2021

X1

X2

X4

no yes

X5

no yes

X3

X6

no yes

X7

no yes

yes

ye
s

ye
s no

no

ye
s no

yes

ye
s

ye
s no

no

ye
s no

The depth of tree A is 3 and the depth of node X4 is 2.

4. What is the depth of tree B?

X1

no yes

ye
s no

The depth of tree B is 1 (decision stump).

5. What is the depth of tree C? What are the depths of nodes X1 and X5 in tree A?

X1

X2

X4

X6

no yes

yes

no

X3

X5

no yes

no

ye
s

ye
s

ye
s

ye
s no

no

yes

yes

no

ye
s no

yes

The depth of tree C is 4. The depth of node X1 is 0 and the depth of X5 is 2.

10-301/10-601: Recitation 2 Page 3 of 15 02/12/2021

6. In class coding and explanation of Depth First Traversal in Python.
Link to the code: https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_
U_-Dfsh4ZQ?usp=sharing

Pre-order, Inorder and Post-order Tree Traversal

This class represents an individual node

class Node:

def __init__(self,key):

self.left = None

self.right = None

self.val = key

def traversal1(root):

if root is not None:

First recurse on left child

traversal1(root.left)

then recurse on right child

traversal1(root.right)

now print the data of node

print(root.val, "\t",end="")

def traversal2(root):

if root is not None:

First print the data of node

print(root.val, "\t",end="")

Then recurse on left child

traversal2(root.left)

Finally recurse on right child

traversal2(root.right)

def traversal3(root):

if root is not None:

First recur on left child

traversal3(root.left)

then print the data of node

print(root.val, "\t",end="")

now recur on right child

traversal3(root.right)

def build_a_tree():

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_U_-Dfsh4ZQ?usp=sharing
https://colab.research.google.com/drive/11OjtswvTVxY1Jxvko75X6_U_-Dfsh4ZQ?usp=sharing

10-301/10-601: Recitation 2 Page 4 of 15 02/12/2021

root.left.right = Node(5)

return root

if __name__ == ’__main__’:

root = build_a_tree()

print ("traversal1 of binary tree is: ")

traversal1(root)

print("\n")

print ("traversal2 of binary tree is: ")

traversal2(root)

print("\n")

print ("traversal3 of binary tree is: ")

traversal3(root)

Code Output

Traversal1 of binary tree is:

Traversal2 of binary tree is

Traversal3 of binary tree is

Now, identify which traversal function is Pre-Order, In-Order, Post-Order DFS respec-
tively :

• traversal1() is

• traversal2() is

• traversal3() is

Traversal1 of binary tree is 4 5 2 3 1

Traversal2 of binary tree is: 1 2 4 5 3

10-301/10-601: Recitation 2 Page 5 of 15 02/12/2021

Traversal3 of binary tree is 4 2 5 1 3

• traversal1() is Post-Order.

• traversal2() is Pre-Order.

• traversal3() is In-Order.

10-301/10-601: Recitation 2 Page 6 of 15 02/12/2021

2 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(X;Y) = H(Y)−H(Y | X)

Exercises

1. Calculate the entropy of tossing a fair coin.
This is the average surprisal from each flip.

H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))
= −1

2
log2(

1
2
)− 1

2
log2(

1
2
) = 1

2. Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.
H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))

= −0 ∗ log2(0)− 1 log2(1) = 0
In other words we are never surprised by any flip. It’s always tails.

3. Calculate the entropy of a fair dice roll.
H(X) = −

∑6
x=1(

1
6
) log2(

1
6
) = log2(6)

4. When is the mutual information I(X;Y) = 0?
I(X;Y) = H(X)−H(X | Y)
I(X;Y) is 0 if and only if X and Y are independent.
Mathematically, H(Y | X) = H(Y) making I(X;Y) go to 0.
Intuitively, this is because if X and Y are independent, knowing one tells you nothing
about the other and vice versa, so their mutual information is 0.

10-301/10-601: Recitation 2 Page 7 of 15 02/12/2021

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no
overcast hot high yes
rain mild high yes
rain cool normal yes
sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

• What is I(Y ;X1)?

• What is I(Y ;X2)? 0.061

• What is I(Y ;X3)? 0.311

• What feature should be split on at the root node?

H(Y) = -6
8
∗ log2(68)−

2
8
∗ log2(28) ≈ 0.811

• I(Y ;X1) = 0.467

For attribute X1,

– H(Y | X1 = sunny) = −[1
3
∗ log2(13) +

2
3
∗ log2(23)] ≈ 0.918

– H(Y | X1 = rain) = 0

– H(Y | X1 = overcast) = 0

=⇒ H(Y | X1) = [3
8
∗ 0.918 + 3

8
∗ 0 + 2

8
∗ 0] ≈ 0.344

=⇒ I(Y ;X1) ≈ 0.811− 0.344 = 0.467

• I(Y ;X2) = 0.061

For attribute X2,

– H(Y | X2 = hot) = −[1
3
∗ log2(13) +

2
3
∗ log2(23)] ≈ 0.918

– H(Y | X2 = cool) = 0

– H(Y | X2 = mild) = −[3
4
∗ log2(34) +

1
4
∗ log2(14)] ≈ 0.811

=⇒ H(Y | X2) = [3
8
∗ 0.918 + 1

8
∗ 0 + 4

8
∗ 0.811] ≈ 0.75

=⇒ I(Y ;X2) ≈ 0.811− 0.75 = 0.061

10-301/10-601: Recitation 2 Page 8 of 15 02/12/2021

• I(Y ;X3) = 0.311

For attribute X3,

– H(Y | X3 = high) = −[1
2
∗ log2(12) +

1
2
∗ log2(12)] = 1

– H(Y | X2 = normal) = 0

=⇒ H(Y | X3) = [4
8
∗ 1.0 + 4

8
∗ 0] = 0.5

=⇒ I(Y ;X3) ≈ 0.811− 0.5 = 0.311

• Split on X1 at the root node

Since splitting on attribute X1 gives the highest mutual information, the root node
is X1.

2. Calculate what the next split should be.
From the above part, as we can see that the sub-datasets D(X1=rain) and D(X1=overcast)

are pure, there will be no further splitting on those and we will place a leaf node with
label assignment decided by majority vote classifier. So, we need to split only on the
sub-dataset D(X1=sunny). Now, we will use only D(X1=sunny) to estimate the probabilities
for the next split.

H(Y) = −1
3
∗ log2(13)−

2
3
∗ log2(23) ≈ 0.918

For attribute X2,

• H(Y | X2 = hot) = 0

• H(Y | X2 = cool) = 0

• H(Y | X2 = mild) = −[1
2
∗ log2(12) +

1
2
∗ log2(12)] = 1

=⇒ H(Y | X2) = [2
3
∗ 1.0 + 1

3
∗ 0] ≈ 0.67

=⇒ I(Y ;X2) ≈ 0.918− 0.67 ≈ 0.25

For attribute X3,

• H(Y | X3 = high) = 0

• H(Y | X3 = normal) = 0

=⇒ H(Y | X3) = [2
3
∗ 0 + 1

3
∗ 0] = 0

=⇒ I(Y ;X3) ≈ 0.918

We split using attribute X3 as it gives the highest mutual information.

3. Draw the resulting tree.

10-301/10-601: Recitation 2 Page 9 of 15 02/12/2021

X1

X3

no yes

yes yes
su
nn
y

hi
gh

norm
al

rain
overcast

10-301/10-601: Recitation 2 Page 10 of 15 02/12/2021

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling? What are the inputs and outputs?
The task: Given a set of train data, test data, and max depth of a tree, we want to do

the following:

1. Use the train data to learn a decision tree classifier.

2. Use our trained classifier to predict the labels of both the train and the test data

3. Calculate the error rates for our classifier on the train and test data

2. What are the inputs and outputs at training time? At testing time? For training inputs:

• The max-depth of the tree

• The training data

For training outputs:

• A fully trained decision tree

For testing inputs:

• A new dataset in the same format as the training data

For testing outputs:

• A prediction for every input row of the dataset given

3. At each node of the tree, what do we need to store?
Some of the most basic things we want to store:

• The attribute to split at the node

• The subset of data at a given node

• The left and right child nodes

• Node depth

Note that this list (and the list on the next question) is not exhaustive. One might want
to store other items that can aid the implementation.

4. What do we need to do at training time?

• Check ”stopping criteria” (e.g. if max depth has been reached, or if the node is
pure). If either are true, run majority vote at the node.

• Calculate entropy and mutual information for the non-used attributes and select
the best attribute to split

10-301/10-601: Recitation 2 Page 11 of 15 02/12/2021

• Split the data based on the selected attributes

5. What happens if max depth is 0?

Majority Vote

6. What happens if max depth is greater than the number of attributes?

Stop growing the tree when all attributes are used.

10-301/10-601: Recitation 2 Page 12 of 15 02/12/2021

4 Programming: Debugging w/ Trees

pdb and common commands

• import pdb then pdb.set trace()

• n (next)

• ENTER (repeat previous)

• q (quit)

• p variable (print value)

• c (continue)

• b (breakpoint)

• l (list where you are)

• s (step into subroutine)

• r (continue until the end of the subroutine)

• ! python command

Real Practice

• In this (extremely contrived) example, we will reversing a 2d list in python.

Buggy Code

• add pdb.set trace() before the line that is causing the error

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [[0]*cols]*rows

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

10-301/10-601: Recitation 2 Page 13 of 15 02/12/2021

Solution: There are two errors:

1. oppositeRow should be set to rows-i-1 as it will be out of bounds otherwise

2. Creating a 2d list with new = [[0 ∗ cols] ∗ rows will result in aliasing.

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [([0] * cols) for row in range(rows)]

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i-1

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

Buggy Code

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

#counts the number of nonzero values

10-301/10-601: Recitation 2 Page 14 of 15 02/12/2021

count = np.count_nonzero(Mat[:,col])

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] == 1

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

Solution: There are two errors:

1. we should be calling getCount instead of np.count nonzero

2. getCount should be checking if the cell is not equal to 0

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

10-301/10-601: Recitation 2 Page 15 of 15 02/12/2021

#counts the number of nonzero values

count = getCount(Mat,col)

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] != 0

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

	Programming: Tree Structures and Algorithms
	ML Concepts: Mutual Information
	ML Concepts: Construction of Decision Trees
	Programming: Debugging w/ Trees

