
Recitation 5
Logistic Regression

10-601: Introduction to Machine Learning

02/18/2022

This recitation consists of 3 parts: In part 1, we will look at code efficiency through the
lens of the speed benefits that numpy provides over python for loops. In part 2, we will go
over how to represent text data using two different feature extraction methods.
Finally, Part 3 will go over the negative log likelihood and gradient derivations for
binary logistic regression, as well as a small toy example. These materials are designed
to help you with Homework 4.

1 The Need For Speed: Vectorization and Numpy

Performing mathematical operations on vectors and matrices is ubiquitous in most machine
learning algorithms. Whether it’s a simple similarity measure that works by calculating the
dot product between two vectors, or deep neural networks, they all involve repeated matrix
operations. This makes it imperative that our underlying code design to perform matrix
operations is efficient.

1.1 The Perils of Python

While Python is widely the language of choice for machine learning researchers across the
globe (thanks to the speed of development and code readability it offers and the support
it enjoys from the open-source community), Python as a high-level language on average is
much slower than a lower level language like C++. To combat this, libraries like numpy and
scipy implement most of the back-end operations they perform in C/C++, while providing
wrappers in Python to be able to call underlying C code seamlessly from a Python script.

1.2 Speed Comparison: Numpy and Python

We highly recommend you to use numpy extensively in this course, it will be difficult to pass
the programming portion of Homework 4 without writing most of your matrix operations in
numpy. In this section, we’ll see why. Please refer to this Google Colab notebook for demos
and example operations.

Consider you have two vectors a, b ∈ Rn. To see how similar they are, as measured by the
cosine angle between them, you want to compute their dot product. This translates to the
following operation:

a · b = a1b1 + a2b2 + ...+ anbn

https://drive.google.com/file/d/12VPAEytOB2A9xOgvq5UQjE-wDA2ywTtT/view?usp=sharing

10-601: Recitation 5 Page 2 of 8 02/18/2022

When translated to code, notice how the dot product in numpy is a whopping 350x faster
than the sequential native for loop in Python!

import time

import numpy as np

VECTOR_SIZE = int(1e8)

a = np.random.rand(VECTOR_SIZE)

b = np.random.rand(VECTOR_SIZE)

start_time = time.time()

ans = np.dot(a, b)

end_time = time.time()

print(f"Time taken to compute answer = {end_time-start_time:.2f}s")

Output: Time taken to compute answer = 0.18s

ans = 0

start_time = time.time()

for i in range(len(a)):

ans += (a[i] * b[i])

end_time = time.time()

print(f"Time taken to compute answer = {end_time-start_time:.2f}s")

Output: Time taken to compute answer = 68.50s

1.3 Useful Numpy Operations

Some operations in numpy that you will find really useful in your assignments are:

• np.matmul: Matrix multiplication of two matrices

• np.unique: Returns unique elements along an axis.

• np.hstack: Stack two arrays horizontally (column-wise)

• np.expand dims: Convert a row vector of size n into a matrix of size n ∗ 1 or 1 ∗ n

• np.log, np.sum, np.exp, and so on...

Other than the Colab notebook, you can also read these two tutorials (beginner, interme-
diate) from the official numpy website. For instance, understanding broadcasting is recom-
mended. It will help you debug the shape errors you might face in all future homeworks.

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.unique.html
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://drive.google.com/file/d/12VPAEytOB2A9xOgvq5UQjE-wDA2ywTtT/view?usp=sharing
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/basics.html
https://numpy.org/doc/stable/user/basics.html

10-601: Recitation 5 Page 3 of 8 02/18/2022

2 Feature Representation for Sentiment Classification

In many machine learning problems, we will want to find appropriate representations for the
inputs of the algorithm we are developing. In Homework 4, we will work on using logistic
regression for a sentiment classification task, where our algorithm takes a paragraph of movie
review as the input and outputs a binary value denoting whether the review is positive or
not. To build an appropriate representation for the input (aka. the review text), we consider
two different representations – (1) a bag-of-word representation and (2) a representation
built using Word2vec1 word embeddings.

In this section, consider a scenario where we are interested in representing the following text:

a hot dog is not a sandwich because it is not square (1)

We consider the following dictionary (denoted below as Vocab) as the set of vocabulary
that we will consider. Note that the vocabulary dictionary might not contain all words in
the text shown above.

dictionary = {

"the": 0,

"square": 1,

"hot": 2,

"is": 3,

"not": 4,

"a": 5,

"happy": 6,

"sandwich": 7

}

1. Bag-of-words Representation

A bag-of-words representation ϕ1(x) of text x is defined by ϕ1(x) = 1occur(x
(i), Vocab),

indicating which words in vocabulary Vocab of the dictionary occur at least once in the
movie review example x(i). Let x be the sample text defined above. Write the bag-of-
words representation of x.

1You can read more about Word2vec on this blog (or the original research paper for the enthusiasts!)

https://arxiv.org/pdf/1301.3781.pdf
https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30
https://arxiv.org/pdf/1301.3781.pdf

10-601: Recitation 5 Page 4 of 8 02/18/2022

2. Word Embedding Based Representation

(a) Word embeddings are reduced dimension vector representations (features) of words.
Given a single word in the dictionary, word embeddings can convert it to a vector
of fixed dimension. In Homework 4, we will provide a dictionary file specifying
pre-computed mappings between every word in Vocab and their corresponding
word embeddings. To facilitate better understanding towards word embeddings, we
produce a plot showing the spatial relationship between several sample words from
the vocabulary used in Homework 4, with their corresponding word embeddings
(reduced to 2D vectors from 300D vectors using a technique called PCA we will
learn about later in this course!):

0.2 0.4 0.6 0.8 1.0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

innocent
amazingly

dreamlike

better

superb

delightful

filthymess

kidnapping
stolen

murderers

Figure 1: Visualization of word embeddings. We select a few positive words (shown in
green) and a few negative words (shown in red). To make the plot, we map the high-
dimensional word representations of these words to 2D space using PCA and then visualize
them in the scatter plot above.

Please comment on your observations and findings based on this plot.

10-601: Recitation 5 Page 5 of 8 02/18/2022

(b) Now, we much translate these word embeddings to sentence embeddings (a vector
representing the sentence as a whole). One approach to building a sentence embed-
ding is to average out the vector representation of every word in the sentence that is
in the dictionary. For example, given text “a hot dog flies like a sandwich”,
we can find the sentence embedding for this text by taking the average of the vector
representation of the words “a”, “hot”, “a”, and “sandwich”.

Now suppose we have the following word embedding dictionary for building sen-
tence embeddings (this is a toy example used for illustrative purposes; actual word
embeddings will have higher dimensions than this example):

dictionary = {

"the": [0.2, 0.3],

"square": [0.8, 0.9],

"hot": [0.1, -0.2],

"is": [0.1, 0.1],

"not": [-0.2, -0.3],

"a": [0.0, 0.0],

"happy": [0.4, 0.4],

"sandwich": [0.2, -0.3]

}

Write the word embedding based representation of the sample text define above,
repeated here for convenience:

a hot dog is not a sandwich because it is not square (2)

10-601: Recitation 5 Page 6 of 8 02/18/2022

3 Binary Logistic Regression

Consider the following dataset,

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {0, 1}.

Notice that instead of regressing on continuous variables, as we do in linear regression, we
wish to predict on discrete variables, and, more specifically, binary outcomes (this process
is called classification). Since we want to take noise into account when making predictions,
we will predict the probability of each outcome given some inputs, each denoted x(i). This
means that the result of the linear combination of each input, x(i) with the parameter vector,
θ, or, θTx(i), must be manipulated to fit between zero and one. We use the sigmoid function,
σ(·), for this purpose.

Recall that

σ(θTx(i)) =
1

1 + exp(−θTx(i))
=

exp(θTx(i))

1 + exp(θTx(i))
.

The conditional probability of y(i) given x(i) is,

p
(
y(i) | x(i),θ

)
=

{
σ(θTx(i)) y(i) = 1

1− σ(θTx(i)) y(i) = 0
.

We can rewrite this as a single statement,

p
(
y(i) | x(i),θ

)
= σ(θTx(i))y

(i)

(1− σ(θTx(i)))(1−y(i)).

Can you show why this is true?

We assume each observation of y(i) in the data is independent and identically distributed.
This means we can write down the likelihood of the data as a product of negative conditional
probabilities.

10-601: Recitation 5 Page 7 of 8 02/18/2022

Let’s plug in the expression for p
(
y(i) | x(i),θ

)
and simplify.

In stochastic gradient descent, we use only a single x(i). Given ϕ(i) = σ(θTx(i)) and

J (i)(θ) = −y(i) log(ϕ(i))− (1− y(i)) log(1− ϕ(i))

Show that the partial derivative of J (i)(θ) with respect to the jth parameter θj is as follows:

∂J (i)(θ)

∂θj
= (σ(θTx(i))− yi)x

(i)
j

Remember,
∂ϕ(i)

∂θj

= ϕ(i) ∗ (1− ϕ(i)) ∗ ∂θTx(i)

∂θj

10-601: Recitation 5 Page 8 of 8 02/18/2022

.

Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

(a) What is J(θ) of above data given initial θ =

−2
2
1

?

(b) Calculate ∂J(1)(θ)
∂θ1

, ∂J
(1)(θ)
∂θ2

and ∂J(1)(θ)
∂θ3

for first training example. Note that σ(3) ≈ 0.95.

(c) Calculate ∂J(2)(θ)
∂θ1

, ∂J
(2)(θ)
∂θ2

and ∂J(2)(θ)
∂θ3

for second training example. Note that σ(−1) ≈
0.25.

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what are
the updated parameters θ if we update θ using the second training example?

(e) What is the new J(θ) after doing the above update? Should it decrease or increase?

(f) Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier output
following this update?

	The Need For Speed: Vectorization and Numpy
	The Perils of Python
	Speed Comparison: Numpy and Python
	Useful Numpy Operations

	Feature Representation for Sentiment Classification
	Binary Logistic Regression

