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1 Principal Component Analysis

Principal Component Analysis aims to project data into a lower dimension, while pre-
serving as much as information as possible.

How do we do this? By finding an orthogonal basis (a new coordinate system) of the data,
then pruning the “less important” dimensions such that the remaining dimensions minimize
the squared error in reconstructing the original data.

Finding the vectors is quite easy visually as seen above, but how do we do this mathemati-
cally? We find the orthogonal vectors u1 . . .uM such that it minimizes the sum of the errors
of ||x(n) − x̂(n)||2, where x(n) is the given data point and x̂(n) is the reconstructed vector
(obtained by projecting x(n) to the lower dimension, then projecting back to the original
dimension).
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Algorithm 1: Principal Component Analysis

Given M < d

Given zero-mean data matrix X ∈ Rd×N , where x(i) refers to the ith column of X
Find set of M vectors [u1, . . . ,uM ]

that minimizes EM = 1
N

∑N
n=1 ∥x(n) − x̂(n)∥2

where x̂(n) =
∑M

i=1 z
(n)
i ui

where z
(n)
i = (ui)

Tx(i)

and ∥ui∥ = 1 for all i

If we have M new vectors, and d original vectors, where M < d, it is usually not possible
to reconstruct the original data without losing any error. In other words, if M = d, we can
reconstruct the original data with 0 error. So, we know that all the error comes from the
(M-d) missing components (vectors). This error can be expressed in terms of the covariance
matrix of the original data, and the error is minimized when the principal component vectors
u1 . . .uM are the top M eigenvectors of the covariance matrix (in terms of eigenvalues). The
higher the eigenvalues for these eigenvectors are, the more information they store and the
lower reconstruction error becomes.

For the following questions, use this Colab notebook.

Let’s assume we’ve performed PCA on the following dataset:

Row X1 X2 X3 X4
1 -0.21 -0.61 -0.35 0.08
2 0.15 -0.77 1.26 1.57
3 0.03 0.12 -0.39 -0.25
4 0.92 1.31 0.31 1.19
5 2.51 1.99 1.86 2.57
6 0.91 1.23 -0.01 0.04

And we’ve obtained the following principal components:

PC1 PC2 PC3 PC4
-0.53 0.23 0.48 -0.66
-0.49 0.7 -0.27 0.44
-0.43 -0.46 0.52 0.57
-0.54 -0.49 -0.65 -0.21

Which correspond to the following eigenvalues:

[3.265, 0.999, 0.043, 0.014]

1. Why are there only 4 principal components?

There are 4 principal components because the original feature space has dimension 4.
Thus, any new basis we construct can only have up to 4 independent components.

2. How much of the variance in the data is preserved by the first two principal compo-
nents? (3.265 + 0.999) / (3.265 + 0.999 + 0.043 + 0.014) = 4.264 / 4.321 = 0.987 *

 https://colab.research.google.com/drive/1qfAw681MGmiFQ0NrZfjrd6dfiWKM6OIV#scrollTo=t9Uxz3HIdCFP
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100 = 99% of the variance.

3. How much of the variance in the data is preserved by the first and third principal
components? (3.265 + 0.043) / (3.265 + 0.999 + 0.043 + 0.014) = 3.308 / 4.321 =
0.766 * 100 = 76% of the variance.

4. Perform a dimensionality reduction on the points such that we project them onto the
first two principal components. Then, inverse transform it back to four dimensions.
What is the reconstruction error for this sample?

The PCA’d dataset is:


0.52 −0.36
−1.1 −1.86
0.23 0.39
−1.9 0.41
−4.5 −0.14
−1.1 1.06


Projected back up to 4 dimensions, we get:


−0.36 −0.5 −0.06 −0.1
0.16 −0.77 1.33 1.51
−0.03 0.16 −0.28 −0.32
1.1 1.21 0.64 0.83
2.36 2.09 2.02 2.5
0.83 1.28 −0.01 0.07


Reconstruction error is 0.542.

5. Perform a dimensionality reduction such that we project the points onto the first and
third principal components. Then, inverse transform it back to four dimensions. What
is the reconstruction error of this new dataset?

The new dataset is:


0.52 −0.17
−1.1 −0.08
0.23 −0.06
−1.9 −0.52
−4.5 −0.03
−1.1 0.07


Projected back up to 4 dimensions, we get:
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−0.36 −0.21 −0.32 −0.17
0.54 0.56 0.43 0.65
−0.15 −0.1 −0.13 −0.09
0.76 1.07 0.55 1.37
2.37 2.2 1.94 2.45
0.62 0.52 0.52 0.54


Reconstruction error is 5.259.

6. Consider the reconstruction error of the fourth row in particular. Is it lower using the
first and second principal components or using the first and third? Why might this be
the case?

Using the first and second principal components:
Error = (0.92− 1.1)2 + (1.31− 1.21)2 + (0.31− 0.64)2 + (1.19− 0.83)2 = 0.28

Using the first and third principal components:
Error = (0.92− 0.76)2 + (1.31− 1.07)2 + (0.31− 0.55)2 + (1.19− 1.37)2 = 0.17

This is because PCA minimizes the mean reconstruction error over all rows, so there
may be rows/data points whose reconstruction errors are not minimized (i.e. another
choice of projection might yield lower error for those points).
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2 K-Means

Clustering is an example of unsupervised machine learning algorithm because it serves to
partition unlabeled data. There are many different types of clustering algorithms, but the
one that is used most frequently and was introduced in class is KMeans.

In KMeans, we aim to minimize the objective function:

n∑
i=1

min
j∈{1,...,k}

||x(i) − cj||2 (1)

Recall the KMeans algorithm from class:

Let D = {x(1),x(2), ...,x(n)} where x(i) ∈ Rd be the set of input examples that each have d
features.

Initialize k cluster centers {c(1), ..., c(k)} where c(i) ∈ Rd

Repeat until convergence:

1. Assign each point x(i) to a cluster C(j) where j = argmin1≤r≤k ||x(i) − c(r)||

2. Recompute each c(i) as the mean of points in C(i)

2.1 Walking through an example

Lets walk through an example of KMeans with k = 3 using the following dataset for the first
iteration:

Let the cluster centers be initialized to c(1) = (0, 2), c(2) = (5, 2), c(3) = (6, 1) as depicted
below in the orange:
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Perform one iteration of the KMeans algorithm:

1. What are the cluster assignments? C(1) = {(0, 0), (−1, 1), (0, 1), (0, 2), (2, 4), (2, 6)}

C(2) = {(3, 4), (3, 5), (5, 2)}

C(3) = {(5, 0), (6, 1), (6,−1), (7,−2), (7,−3)}

2. What are the recomputed cluster centers? c(1) = (0.5, 2.33)

c(2) = (3.67, 3.67)

c(3) = (6.2,−1)

3. Draw the cluster assignments after the first iteration on the graph below.

2.2 The importance of initialization

Given the points in the graph below, and assume we will have k = 3 cluster centers.
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1. Given an example of a set of initialization points such that the KMeans algorithm
would converge to a global minimum.

Any three points where each belongs to a different cluster

2. Given an example of a set of initialization points such that the KMeans algorithm
would converge to a local minimum instead of the global minimum.

For example, one to the upper left corner, the other two at the bottom right corner
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3 Ensemble Methods

3.1 AdaBoost

3.1.1 AdaBoost Definitions

• T : The number of iterations used to train AdaBoost.

• N : The number of training samples.

• S = {(x(1), y(1)), · · · , (x(N), y(N))}: The training samples with binary labels (y(i) ∈
{−1,+1}).

• d: The VC-dimension of the weak learner hypothesis class.

• Dt(i): The weight assigned to training example i at time t. Note that
∑

iDt(i) = 1.

• ht: The weak learner constructed at time t.

• ϵt: The error of ht on Dt.

• Zt = 2
√
ϵt(1− ϵt): The normalization factor for the distribution update at time t.

• αt =
1
2
ln((1−ϵt)/ϵt): The weight assigned to the learner ht in the composite hypothesis.

• ft(x) =
(∑t

t′=1 αt′ht′(x)
)
/
(∑t

t′=1 αt′
)
: The majority vote of the weak learners, rescaled

based on the total weights.

• Ht(x) = sign(ft(x)): The voting classifier decision function.

• ϵ̂S (H): The training error of classifier H.

• ϵ (H): The generalization error of classifier H.

3.1.2 AdaBoost Weighting

AdaBoost relies on building an ensemble of weak learners, assigning them weights based on
their errors during training.

1. Assume we are in the binary classification setting. What happens to the weight αt =
1

2
ln

(
1− ϵt
ϵt

)
of classifier ht if its error ϵt > 0.5? Why is this useful? It becomes

negative (check the log term). This ”inverts” the output of this weak learner for every
input, turning it into a classifier with ϵt < 0.5.

Note that if we can find weak learners ht with ϵt < 0.5 for all t, training error will
decrease exponentially fast in the total number of iterations T .

3.1.3 The Margin

In the following question, we will examine the generalization error of AdaBoost using a
concept known as the classification margin.
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For a binary classification task, assume that we use a probabilistic classifier that provides a
probability distribution over the possible labels (i.e. p(y|x) for y ∈ {+1,−1}). The classifier
output is the label with highest probability. We define the classification margin for an input
as the signed difference between the probability assigned to the correct label and the incorrect
label pcorrect − pincorrect, which takes on values in the range [−1, 1].

1. Let margint(x, y) represent the margin for our AdaBoost classifier at iteration t on the
sample (x, y). Write a single inequality in terms of margint(x, y) that is true if and
only if the classifier makes a mistake on the input (x, y) (i.e., provide a bound on the
margin in the case the classifier is incorrect). Assume the classifier makes a mistake
on ties.

margint(x, y) ≤ 0.

2. For a given input and label (x(i), y(i)), write margint(x
(i), y(i)) in terms of x(i), y(i), and

ft.

y(i)ft(x
(i))

INTUITION: ft tells us the difference between the probabilities on the positive and
negative labels, which is the margin in the case that the real label is positive. In the
case that the real label is negative, ft is the opposite of the margin. In both cases, this
gives us the margin as ft(x

(i)) multiplied by the true label y(i).

To find margint(x
(i), y(i)), we must find expressions for pcorrect and pincorrect. We will do

this by first finding expressions for p+ and p−, the probabilities assigned the positive
and negative classes during our decision.

First, note that each weak learner has an associated weight αt. These weights are not
normalized: the weight sum α =

∑t
t′=1 αt′ is not necessarily 1.

When we classify a point x(i), we use the function ft(x
(i)). This function computes the

weighted summation over the outputs of all individual weak learners and normalizes
this by the total sum of weights. Because each weak learner outputs ±1, we have
ft(x

(i)) ∈ [−1, 1].

Now, let’s rewrite ft(x
(i)) =

∑t
t′=1

α′
t

α
ht′(x

(i)) (pushing in that denominator summation

α we defined earlier). We can think of
α′
t

α
as the probability assigned to the weak learner

ht′ from time t′.

Let’s look at a single element of this summation
α′
t

α
ht′(x

(i)). If ht′ predicts positive on

x(i), then ht′(x
(i)) = 1 and this element is

α′
t

α
. Similarly, if ht′ predicts negative, this is

−α′
t

α
.
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We can then rewrite our summation ft as follows:

ft(x
(i)) =

∑
t′:ht′ (x

(i))=1

αt′

α
−

∑
t′:ht′ (x

(i))=−1

αt′

α

where the first summation contains all the weights of weak learners that predicted posi-
tive and the second summation contains all the weights of weak learners that predicted

negative. Note that
∑

t′
αt′

α
=

1

α

∑
t′ αt′ =

α

α
= 1, s the total weight here does sum

to 1. Thus, we can now define p+ =
∑

t′:ht′ (x
(i))=1

αt′

α
and p− =

∑
t′:ht′ (x

(i))=−1

αt′

α
, and

ft(x
(i)) = p+ − p−.

Note that if the true label y(i) = +1, our margin is pcorrect − pincorrect = p+ − p− =
ft(x

(i)). If the true label is y(i) = −1, our margin is pcorrect − pincorrect = p− − p+ =
−ft(x(i)). Thus, our margin is always given by y(i)ft(x

(i)).

3.1.4 Weak Learners

We always talk about AdaBoost with ”weak” learners, why can’t we ensemble together
”stronger” learners? Let’s take a look at bounds on the test error of AdaBoost, fixing the
number of samples N and number of training iterations T , but allowing variation in the
hypothesis class of learners H.

Bound 1 (PAC Learning) :ϵ (HT ) ≤ ϵ̂S (HT ) +O

(√
T log T

√
d

√
logN

N

)

Bound 2 (Margin Analysis) :ϵ (HT ) ≤ P̂r
(x(i),y(i))∼S

[
marginT (x

(i), y(i)) ≤ θ
]
+O

1

θ

√
d

√
log2N

N


Specifically, consider d, the VC dimension of the weak learners used.

1. What happens to our bounds on true error if we increase the VC dimension of the
weak learner hypothesis space? The bounds loosen/increase.

2. Intuitively, what happens to the complexity of the overall classifier if we use more
complex weak learners? It becomes a more complex function, as it is a sum of more
complex functions.

3. What concept does this connection between classifier complexity and error relate to?
Overfitting
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3.2 The Weighted Majority Algorithm

Consider the Weighted Majority Algorithm. In this setting, we are given a fixed set of
available weak classifiers, and our goal is to create a single strong classifier that incorporates
information from all of the weak classifiers, using a single pass over the input.

In lecture, we discussed upper bounds on the mistakes made by the Weighted Majority
Algorithm. Today in recitation, we’ll discuss lower bounds on the mistakes made by any
deterministic prediction algorithm operating in this setting, where we have a fixed set of
classifiers given to us.

Consider the case where we have exactly two available weak classifiers: one that always
outputs +1 and another that always outputs −1.

1. What is the highest possible number of mistakes our weighted majority classifier may
make over an input of length n? n

2. How do we pick an input label sequence that achieves this accuracy? Since the algo-
rithm is deterministic, we can exactly model its behavior on any partial sequence of
input we have constructed so far. We can then keep picking the next input’s label to
be the opposite of what the classifier would output.

3. In this setting, the best weak classifier makes at most how many mistakes?

n/2. There must be at most n/2 of wrong predictions.

4. Assume the number of mistakes equals to n, what is the resulting lower bound on the
number of mistakes our weighted majority classifier makes, in terms of the number of
mistakes m made by the best weak classifier?

Our classifier makes at least 2m mistakes. Using question 3, n
2
≤ m ⇐⇒ n ≤ 2m

where n equals the number of mistake we make.
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4 Recommender Systems

We generally divide recommender systems into two types. What are those types? collabo-
rative filtering and content-based filtering

4.1 Collaborative Filtering

Collaborative filtering recommends items to users based on other similar users’ preferences,
meaning that it depends on the ratings to an item from other users. We have covered two
collaborative filtering methods in the lecture:

• Neighborhood Methods

• Matrix Factorization

4.1.1 Neighborhood Methods

Different from the k nearest neighbor method, the neighborhood methods in collaborative
filtering extract a neighborhood given the user data (the items you have experienced) and
recommend the items preferred by this neighborhood to the user. Specifically, the step-by-
step approach is:

1. Observe the items the target user has experienced

2. Find the other user or users who have experienced the most of those items

3. Recommend the set of items not experienced by the target user that have been expe-
rienced by the largest number of these other users

Let’s assume for each user, we can construct a following vector:

Uitems = {u1, u2, · · · , uk}

where ui term in the vector shows:{
1 if the user has viewed this item

0 if the user has not viewed this item

Is the closest neighbor by Manhattan or Euclidean distance of Uitems vectors always in the
neighborhood we use for recommendations?

No. Because we want our closest neighbor of our target user to be chosen only based on their
shared experiences with our target user. We also want these neighbors to have a set of many
experiences which the target user does not have, so that we can recommend unseen items.
Thus, we do not want to penalize by increasing distance if the other users have experienced
many things the target user has not.
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4.1.2 Matrix Factorization

1. When doing PCA, given a dataset X, we are able to perform SVD to find the eigen-
vectors and eigenvalues of the covariance matrix 1

N
XTX. If dealing with a user/item

matrix R ∈ Rn×m, can we also use SVD to find the matrix decomposition R? If yes,
write out the formula for the decomposition; if no, explain why not.

We cannot use SVD to find the decomposition of the user/rating matrix, because the
R matrix has missing values. SVD cannot be performed on a dataset with missing
values.

2. Suppose we have n users and m items, with a partially observed ratings matrix R ∈
Rn×m For Matrix Factorization, our goal is to find user matrix U ∈ Rn×d and item
matrix V ∈ Rm×d such that R̂ = UV T accurately reconstructs our observed ratings
and predicts our unobserved ratings. Our reconstruction of the rating of item j by
user i is given by

r̂ij = u⃗i
T v⃗j

, where u⃗i ∈ Rd is our learned user vector and v⃗j ∈ Rd is our learned item vector.

Let I = {(i, j) : rij is observed}. Describe the objective function J(U, V ), using a
squared error loss.

J(U, V ) =
∑
(i,j)∈I

Jij(U, V ) =
1

2

∑
(i,j)∈I

(rij − u⃗i
T v⃗j)

2

3. We can learn our decomposition by using an optimization method like SGD. Describe
below the steps applying SGD.

• sample (i, j) from I

• step opposite gradient of Jij(U,V)

4. What are the gradients ∇u⃗i
Jij(U,V) and ∇v⃗jJij(U,V) for our gradient update?

∇u⃗i
Jij(U,V) = (rij − u⃗i

T v⃗j)v⃗j

∇v⃗jJij(U,V) = (rij − u⃗i
T v⃗j)u⃗i

4.1.3 Alternating Least Squares for Matrix Factorization

Because both U and V are unknowns, our objective function is non-convex and hard to opti-
mize. However, if we fix one of the unknowns, the optimization problem becomes quadratic
and can be directly solved. ALS rotates between fixing the U to optimize V and fixing V to
optimize U . This algorithm is called Block Coordinate Descent.

If we fix one of the unknowns, what known problem (with a closed-form solution) does this
reduce to?

Least squares (from linear regression), hence the name.
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Write the block coordinate descent pseudocode for ALS.

U← argmin
U

J(U,V)

V← argmin
V

J(U,V)

Now, let’s look at the interpretation of our user and item vectors. Note that both types of
vector inhabit the shared coordinate space Rd, and that we compute similarity with a dot
product. This allows us to interpret both user vectors and item vectors as representations
in a shared lower-dimensional space.

4.2 Content-Based Filtering

Content-based filtering recommends items to users based on information about the content
of an item. For example, suppose we are trying to recommend movies to users. What are
some examples of content information we could use? actors/actresses, year of release, genre,
length

Suppose we are trying to recommend movies to a user. We are given a feature vector for
each movie with content information, and for movies the user has watched, we are given
labels for whether or not they liked the movie. What are some ways we could provide
recommendations? Train a supervised learning algo on the features and labels and make
predictions on unseen movies

What is one advantage of content-based filtering over collaborative filtering? We don’t need
other users in the system at all; can start making predictions without user/item interactions.
We also don’t need to take and store user data, which improves data privacy. This can
also be much more explainable than specifically MF for collaborative filtering, since we
can choose our features instead of having the optimally computed but hard to understand
lower-dimensional space.

What is one advantage of collaborative filtering over content-based filtering? It can be
hard or computationally expensive to find and compute content information or train such
recommender algorithms.
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