
Neural Networks

1

10-301/601 Introduction to Machine Learning

Matt Gormley
Lecture 11

Feb. 23, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Post-Exam Followup:
– Exam Viewing

– Exit Poll: Exam 1

– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Fri, Feb 18

– Due: Sun, Feb. 27 at 11:59pm

• Swapped lecture/recitation:
– Lecture 12: Fri, Feb. 25

2

OPTIMIZATION FOR L1
REGULARIZATION

6

Optimization for L1 Regularization

Can we apply SGD to the LASSO learning
problem?

7

JLASSO(�) = J(�) + �||�||1

=
1

2

N�

i=1

(�T x(i) � y(i))2 + �
K�

k=1

|�k|

�MAP = argmax
�

N�

i=1

log p�(y(i)|x(i)) + log p(�)

= argmax
�

JLASSO(�)argmin

Optimization for L1 Regularization

• Consider the absolute value function:

8

r(�) = �
K�

k=1

|�k|

• The L1 penalty is subdifferentiable (i.e. not
differentiable at 0)

Optimization for L1 Regularization

• The L1 penalty is subdifferentiable (i.e. not
differentiable at 0)

• An array of optimization algorithms exist to handle
this issue:
– Subgradient descent

– Stochastic subgradient descent

– Coordinate Descent

– Othant-Wise Limited memory Quasi-Newton (OWL-QN)
(Andrew & Gao, 2007) and provably convergent variants

– Block coordinate Descent (Tseng & Yun, 2009)

– Sparse Reconstruction by Separable Approximation
(SpaRSA) (Wright et al., 2009)

– Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
(Beck & Teboulle, 2009)

9

Basically the same as GD
and SGD, but you use

one of the subgradients
when necessary

NEURAL NETWORKS

10

A Recipe for

Machine Learning

1. Given training data:

11

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression,
Logistic regression, Neural Network

Examples: Mean-squared error,
Cross Entropy

A Recipe for

Machine Learning

1. Given training data: 3. Define goal:

12

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

A Recipe for

Machine Learning

1. Given training data: 3. Define goal:

13

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

A Recipe for

Machine Learning

1. Given training data: 3. Define goal:

14

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions
(Neural Networks)

2. Consider variants of this recipe for training

Linear Regression

15

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a

Logistic Regression

16

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Perceptron

17

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Neural Network

18

Decision
Functions

…

…

Output

Input

Hidden Layer

COMPONENTS OF A NEURAL
NETWORK

19

Neural Network

20

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned
the weights of the neural
network.

To make a new prediction, we
take in some new features
(aka. the input layer) and
perform the feed-forward
computation.

Neural Network

21

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)
Σ = .50

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

22

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

23

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

24

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

25

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Except we only have the
target value for y at training

time!
We have to learn to create

“useful” values of z1 and z2 in
the hidden layer.

From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between

neurons
• A neuron sends an

electrochemical pulse along its
synapses when a sufficient voltage
change occurs

• Biological Neural Network:
collection of neurons along some
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic

graph (DAG)

• Weight: multiplier on each edge

• Activation Function: nonlinear
thresholding function, which allows a
neuron to “fire” when the input value
is sufficiently high

• Artificial Neural Network: collection
of neurons into a DAG, which define
some differentiable function

32

Biological “Computation”
• Neuron switching time : ~ 0.001 sec

• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching

units

• Many weighted interconnections
among units

• Highly parallel, distributed processes

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…

DEFINING A 1-HIDDEN LAYER
NEURAL NETWORK

33

Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer

34

Neural Network

36

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

37

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

38

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

39

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

40

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

41

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

NONLINEAR DECISION BOUNDARIES
AND NEURAL NETWORKS

42

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

43

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

44

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Networks

Chalkboard
– 1D Example from linear regression to logistic

regression

– 1D Example from logistic regression to a neural
network

45

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

46

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

47

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Network Parameters

Question:
Suppose you are training a
one-hidden layer neural
network with sigmoid
activations for binary
classification.

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.

48

Answer:

ARCHITECTURES

49

Neural Network

50

Decision
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification

Neural Networks

Chalkboard
– Example: Neural Network w/2 Hidden Layers

– Example: Feed Forward Neural Network
(matrix form)

51

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)

4. Form of objective function

5. How to initialize the parameters

52

BUILDING WIDER NETWORKS

53

Building a Neural Net

56

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…

• a selection of
the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D = M

Building a Neural Net

57

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…

• a selection of
the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D < M

Building a Neural Net

59

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…

• a selection of
the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D > M

Building a Neural Net

60

…

Output

Input

Hidden Layer

In the following examples, we have two input features,
M=2, and we vary the number of hidden units, D.

The hidden units
could learn to be…

• a selection of
the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D ≥ M

DECISION BOUNDARY EXAMPLES
Examples 1 and 2

61

62

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

63

Example #1: Diagonal Band

64

Example #1: Diagonal Band

65

hidden

Example #1: Diagonal Band

66

hidden

Example #1: Diagonal Band

67

hidden

Example #1: Diagonal Band

68

hidden

Example #1: Diagonal Band

69

hidden

hidden

hiddenhidden

Example #2: One Pocket

70

Example #2: One Pocket

71

Example #2: One Pocket

72

hidden

Example #2: One Pocket

73

hidden

Example #2: One Pocket

74

hidden

Example #2: One Pocket

75

hidden

Example #2: One Pocket

76

hidden

Example #2: One Pocket

77

hidden hidden

hiddenhidden

DECISION BOUNDARY EXAMPLES
Examples 3 and 4

78

79

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #3: Four Gaussians

80

Example #3: Four Gaussians

81

Example #3: Four Gaussians

82

Example #3: Four Gaussians

83

hidden

Example #3: Four Gaussians

84

hidden

Example #3: Four Gaussians

85

hidden

Example #3: Four Gaussians

86

hidden

Example #4: Two Pockets

87

Example #4: Two Pockets

88

Example #4: Two Pockets

91

Example #4: Two Pockets

92

hidden

Example #4: Two Pockets

93

hidden

Example #4: Two Pockets

94

hidden

Example #4: Two Pockets

95

hidden

BUILDING DEEPER NETWORKS

96

Deeper Networks

97

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?

Deeper Networks

98

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?

Q: How many layers should we use?

Deeper Networks

99

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Deeper Networks

100

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function
approximator

– Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers)

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.

Feature Learning

• Traditional feature
engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

101
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision

Feature Learning

• Traditional feature
engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

102
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Faces

Feature Learning

• Traditional feature
engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

103
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars

