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Reminders

• Post-Exam Followup:
– Exam Viewing

– Exit Poll: Exam 1

– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Fri, Feb 18

– Due: Sun, Feb. 27 at 11:59pm

• Swapped lecture/recitation:
– Lecture 12: Fri, Feb. 25
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OPTIMIZATION FOR L1 
REGULARIZATION
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Optimization for L1 Regularization

Can we apply SGD to the LASSO learning 
problem?
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Optimization for L1 Regularization

• Consider the absolute value function:
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r(�) = �
K�

k=1

|�k|

• The L1 penalty is subdifferentiable (i.e. not 
differentiable at 0)



Optimization for L1 Regularization

• The L1 penalty is subdifferentiable (i.e. not 
differentiable at 0)

• An array of optimization algorithms exist to handle 
this issue:
– Subgradient descent

– Stochastic subgradient descent

– Coordinate Descent

– Othant-Wise Limited memory Quasi-Newton (OWL-QN) 
(Andrew & Gao, 2007)  and provably convergent variants

– Block coordinate Descent (Tseng & Yun, 2009)

– Sparse Reconstruction by Separable Approximation 
(SpaRSA) (Wright et al., 2009)

– Fast Iterative Shrinkage Thresholding Algorithm (FISTA) 
(Beck & Teboulle, 2009)
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Basically the same as GD 
and SGD, but you use 

one of the subgradients
when necessary



NEURAL NETWORKS
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A Recipe for 

Machine Learning

1. Given training data:
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Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 

Machine Learning

1. Given training data: 3. Define goal:

12

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)



A Recipe for 

Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 

Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Perceptron
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Neural Network
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Decision 
Functions

…

…

Output

Input

Hidden Layer



COMPONENTS OF A NEURAL 
NETWORK
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned 
the weights of the neural 
network.

To make a new prediction, we 
take in some new features 
(aka. the input layer) and 
perform the feed-forward 
computation. 



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)
Σ = .50

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.

Except we only have the 
target value for y at training 

time! 
We have to learn to create 

“useful” values of z1 and z2 in 
the hidden layer.



From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between 

neurons
• A neuron sends an 

electrochemical pulse along its 
synapses when a sufficient voltage 
change occurs

• Biological Neural Network: 
collection of neurons along some 
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic 

graph (DAG)

• Weight: multiplier on each edge

• Activation Function: nonlinear 
thresholding function, which allows a 
neuron to “fire” when the input value 
is sufficiently high 

• Artificial Neural Network: collection 
of neurons into a DAG, which define 
some differentiable function
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Biological “Computation”
• Neuron switching time : ~ 0.001 sec

• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching 

units

• Many weighted interconnections 
among units

• Highly parallel, distributed processes 

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…



DEFINING A 1-HIDDEN LAYER 
NEURAL NETWORK
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Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
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Weights



Neural Network
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Decision 
Functions
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Neural Network
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Decision 
Functions

Output

Input
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer
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β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



NONLINEAR DECISION BOUNDARIES 
AND NEURAL NETWORKS
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y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Networks

Chalkboard
– 1D Example from linear regression to logistic 

regression

– 1D Example from logistic regression to a neural 
network
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y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Network Parameters

Question:
Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.

48

Answer:



ARCHITECTURES
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Neural Network

50

Decision 
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification



Neural Networks

Chalkboard
– Example: Neural Network w/2 Hidden Layers

– Example: Feed Forward Neural Network 
(matrix form)
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)

4. Form of objective function

5. How to initialize the parameters
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BUILDING WIDER NETWORKS
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Building a Neural Net

56

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…

• a selection of 
the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the
above

D = M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…

• a selection of 
the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D < M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…

• a selection of 
the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D > M



Building a Neural Net
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…

Output

Input

Hidden Layer

In the following examples, we have two input features, 
M=2, and we vary the number of hidden units, D.

The hidden units 
could learn to be…

• a selection of 
the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D ≥ M



DECISION BOUNDARY EXAMPLES
Examples 1 and 2
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden

hiddenhidden



Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden hidden
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DECISION BOUNDARY EXAMPLES
Examples 3 and 4
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians

83

hidden



Example #3: Four Gaussians
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Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



BUILDING DEEPER NETWORKS
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Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks
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…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning

• Traditional feature 
engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g.
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

101
Figures from Lee et al. (ICML 2009)
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…

…

…

pixels

lines

parts

objects

decision



Feature Learning

• Traditional feature 
engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers
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Figures from Lee et al. (ICML 2009)
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CBDN on Faces



Feature Learning

• Traditional feature 
engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g.
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers
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Figures from Lee et al. (ICML 2009)
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