

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Networks

Matt Gormley Lecture 11 Feb. 23, 2022

Reminders

- **Post-Exam Followup:**
	- **Exam Viewing**
	- **Exit Poll: Exam 1**
	- **Grade Summary 1**
- **Homework 4: Logistic Regression**
	- **Out: Fri, Feb 18**
	- **Due: Sun, Feb. 27 at 11:59pm**
- **Swapped lecture/recitation:**
	- **Lecture 12: Fri, Feb. 25**

OPTIMIZATION FOR L1 REGULARIZATION

Optimization for L1 Regularization *N*

Can we apply SGD to the LASSO learning problem? *MAP* = argument of the top to the top that $\overline{}$ log *p*(*y*(*i*) *[|]*x(*i*) argmin *J*LASSO⁽⁰⁾ $\boldsymbol{\theta}$

$$
J_{\text{LASSO}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_1
$$

= $\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 + \lambda \sum_{k=1}^{K} |\theta_k|$

) + log *p*()

Optimization for L1 Regularization

• Consider the absolute value function:

$$
r(\boldsymbol{\theta}) = \lambda \sum_{k=1}^{K} |\theta_k|
$$

• The L1 penalty is subdifferentiable (i.e. not differentiable at 0)

Def: A vector $g \in \mathbb{R}^M$ is called a subgradient of a function $f(\mathbf{x})$: $\mathbb{R}^M \to \mathbb{R}$ at the point x if, for all $\mathbf{x}' \in \mathbb{R}^M$, we have:

 $f(\mathbf{x}') \geq f(\mathbf{x}) + \mathbf{g}^{T}(\mathbf{x}' - \mathbf{x})$

Optimization for L1 Regularization

- The L1 penalty is subdifferentiable (i.e. not differentiable at 0)
- An array of optimization algorithms exist to handle this issue: Basically the same as GD
	- Subgradient descent
	- Stochastic subgradient descent
	- Coordinate Descent

- Block coordinate Descent (Tseng & Yun, 2009)
- Sparse Reconstruction by Separable Approximation (SpaRSA) (Wright et al., 2009)
- Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck & Teboulle, 2009)

and SGD, but you use

one of the subgradients

when necessary

NEURAL NETWORKS

Background

A Recipe for Machine Learning

- 1. Given training data: $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$
- 2. Choose each of these:
	- Decision function
		- $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$
	- Loss function
		- $\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}_i) \in \mathbb{R}$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

- 1. Given training data: 3. Define goal: $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$
- 2. Choose each of these:
	- Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

– Loss function

 $\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}_i) \in \mathbb{R}$

4. Train with SGD: (take small steps opposite the gradient)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

 $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

Background

A Recipe for adients and the learning Gradients

 $\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$

2. Choose each of the

– Decision function

$$
\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)
$$

– Loss function

 $\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}_i) \in \mathbb{R}$

1. Given training dat Backpropagation can compute this gradient!

> can compute the gradient of any differentiable function efficiently! And it's a **special case of a more general algorithm** called reversemode automatic differentiation that

$$
\boldsymbol{\mu}^{(t)} = \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)
$$

o the gradient

A Recipe for

y's Lecture $\overline{\mathsf{B}}$ Coalc for Goals for Today's Lecture

- 1. Explore a new class of decision functions (Neural Networks)
	- 2. Consider **variants of this recipe** for training

2. Choose each of these:

– Decision function

$$
\hat{\bm{y}} = f_{\bm{\theta}}(\bm{x}_i)
$$

– Loss function

 $\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}_i) \in \mathbb{R}$

Train with SGD: ke small steps opposite the gradient)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

Neural Network

COMPONENTS OF A NEURAL NETWORK

Neural Network

Suppose we already learned the weights of the neural network.

To make a new prediction, we take in some new features (aka. the input layer) and perform the feed-forward computation.

Decision Neural Network Functions Output **Weights 2 1 0 0** $.62$ Hidden Layer *Σ = .50 .62 = σ(.50)* Weights $\begin{array}{|c|c|c|c|c|c|}\n\hline\n& 0.50 & = & 13(1) + 2(.3) + 7(-.2)\n\hline\n\end{array}$ *.8 .1 .3 -.4 -.2 .5* The computation of each 13 Input $\boldsymbol{\mathcal{D}}$ neural network unit resembles **binary logistic regression.**

Decision Neural Network Functions Output **Weights 2** *_7* **/ 0** *.80* = $\sigma(1.4)$ $1.4 = 13(-.4) + 2(.5) + 7(.8)$ $.62$ $.80$ Hidden Layer *Σ = .50 Σ = 1.4* Weights *.8 .1 .3 -.4 -.2 .5* The computation of each 13 \mathcal{D} Input neural network unit resembles binary logistic regression.

.29 = .62(-.7) + .80(.9) .57 = σ(.29)

The computation of each neural network unit resembles binary logistic regression.

Neural Network

.29 = .62(-.7) + .80(.9) .57 = σ(.29)

$$
.80 = \sigma(1.4)
$$

1.4 = 13(-.4) + 2(.5) + 7(.8)

$$
.62 = \sigma(.50)
$$

 $.50 = 13(.1) + 2(.3) + 7(-.2)$

The computation of each neural network unit resembles binary logistic regression.

Neural Network

Except we only have the target value for y at training time! We have to learn to create "useful" values of z_1 and z_2 in the hidden layer.

The computation of each neural network unit resembles binary logistic regression.

From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology…

Biological "Model"

- **Neuron:** an excitable cell
- **Synapse**: connection between neurons
- A *neuron* sends an **electrochemical pulse** along its *synapses* when a sufficient voltage change occurs
- **Biological Neural Network:** collection of neurons along some pathway through the brain

Biological "Computation"

- Neuron switching time : $~\sim$ 0.001 sec
- Number of neurons: $\sim 10^{10}$
- Connections per neuron: $~10^{4-5}$
- Scene recognition time: \sim 0.1 sec

Artificial Mode

- **Neuron**: node in a directed acyclic graph (DAG)
- **Weight**: multiplier on each edge
- **Activation Function**: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high
- **Artificial Neural Network:** collection of neurons into a DAG, which define some differentiable function

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

Dendrites Nodes Synapses *(weights)* Axon **Impulse** Synapses

DEFINING A 1-HIDDEN LAYER NEURAL NETWORK

Neural Networks

Chalkboard

– Example: Neural Network w/1 Hidden Layer

Neural Network

$$
y=\sigma(\beta_1z_1+\beta_2z_2)
$$

$$
z_2 = \sigma(\alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{23}x_3)
$$

$$
z_1 = \sigma(\alpha_{11}x_1 + \alpha_{12}x_2 + \alpha_{13}x_3)
$$

Decision Neural Network Functions $y = \sigma(\beta_1 z_1 + \beta_2 z_2)$ Output $\boldsymbol{\mathcal{V}}$ Weights β_1 β_2 $z_2 = \sigma(\alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{23}x_3)$ Hidden Layer Z_2 Z_I

 α_{11} α_{21} α_{12} α_{22} α_{13}

 x_2

⍺*22*

 α_{23}

 x_3

Input

 x_I

Weights

 $z_1 = \sigma(\alpha_{11}x_1 + \alpha_{12}x_2 + \alpha_{13}x_3)$

37

Neural Network

$$
y=\sigma(\beta_1z_1+\beta_2z_2)
$$

$$
\frac{z_2 = \sigma(\alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{23}x_3)}{z_1 = \sigma(\alpha_{11}x_1 + \alpha_{12}x_2 + \alpha_{13}x_3)}
$$

Neural Network

$$
y = \sigma(\boldsymbol{\beta}^T\mathbf{z})
$$

$$
z_2 = \sigma(\boldsymbol{\alpha}_{2,\cdot}^T\mathbf{x})\\z_1 = \sigma(\boldsymbol{\alpha}_{1,\cdot}^T\mathbf{x})
$$

NONLINEAR DECISION BOUNDARIES AND NEURAL NETWORKS

Neural Networks

- *Chalkboard*
	- 1D Example from linear regression to logistic regression
	- 1D Example from logistic regression to a neural network

Neural Network Parameters

Question:

Suppose you are training a one-hidden layer neural network with sigmoid activations for binary classification.

$$
\bullet\bullet\bullet\bullet\hspace{0.05cm}+\hspace{0.05cm}+\hspace{0.05cm}\bullet\hspace{0.05cm}\bullet\hspace{0.05cm}\bullet\hspace{0.05cm}\bullet
$$

True or False: There is a unique set of parameters that maximize the likelihood of the dataset above.

Answer:

ARCHITECTURES

Decision Functions

Neural Network

Neural Network for Classification

Neural Networks

Chalkboard

- Example: Neural Network w/2 Hidden Layers
- Example: Feed Forward Neural Network (matrix form)

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function
- 5. How to initialize the parameters

BUILDING WIDER NETWORKS

Building a Neural Net

Q: How many hidden units, D, should we use?

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

Building a Neural Net

Q: How many hidden units, D, should we use?

- a selection of the most useful features
- nonlinear combinations of the features
	- a lower dimensional projection of the features
	- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

Building a Neural Net

Q: How many hidden units, D, should we use?

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

Building a Neural Net **D ≥ M**

In the following examples, we have two input features, M=2, and we vary the number of hidden units, D.

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

Examples 1 and 2

DECISION BOUNDARY EXAMPLES

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band Example #2: One Pocket

Logistic Regression

Tuned Neural Network (hidden=2, activation=logistic)

LR1 for Tuned Neural Network (hidden=2, activation=logistic)

LR2 for Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=2, activation=logistic)

LR2 for Tuned Neural Network (hidden=2, activation=logistic)

Logistic Regression

Tuned Neural Network (hidden=3, activation=logistic)

LR1 for Tuned Neural Network (hidden=3, activation=logistic)

LR2 for Tuned Neural Network (hidden=3, activation=logistic)

LR3 for Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

LR3 for Tuned Neural Network (hidden=3, activation=logistic) Tuned Neural Network (hidden=3, activation=logistic)

Examples 3 and 4

DECISION BOUNDARY EXAMPLES

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians

Example #3: Four Gaussians

Example #3: Four Gaussians

K-NN $(k=5,$ metric=euclidean)

Logistic Regression

 \mathbf{L}

K-NN (k=5, metric=euclidean)

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=4, activation=logistic)

Tuned Neural Network (hidden=10, activation=logistic)

BUILDING DEEPER NETWORKS

Q: How many layers should we use?

Q: How many layers should we use?

Q: How many layers should we use?

• **Theoretical answer:**

- A neural network with 1 hidden layer is a **universal function approximator**
- Cybenko (1989): For any continuous function g(**x**), there exists a 1-hidden-layer neural net $h_{\theta}(\mathbf{x})$ s.t. $|h_{\theta}(\mathbf{x}) - g(\mathbf{x})| < \epsilon$ for all **x**, assuming sigmoid activation functions

• **Empirical answer:**

- **…** Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

Feature Learning

- **Traditional feature engineering:** build up levels of abstraction by hand
- **Deep networks** (e.g. convolution networks): learn the increasingly higher levels of abstraction from data
	- each layer is a learned feature representation
	- sophistication increases in higher layers

Figures from Lee et al. (ICML 2009) 101

Feature Learning

• **Traditional feature engineering:** build up levels of abstraction by hand

• **Deep networks** (e.g. convolution networks): learn the increasingly higher levels of abstraction from data

- each layer is a learned feature representation
- sophistication increases in higher layers

Figures from Lee et al. (ICML 2009) 102

Feature Learning

• **Traditional feature engineering:** build up levels of abstraction by hand

• **Deep networks** (e.g. convolution networks): learn the increasingly higher levels of abstraction from data

- each layer is a learned feature representation
- sophistication increases in higher layers

Figures from Lee et al. (ICML 2009) 103