10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation

Matt Gormley
Lecture 12
Feb. 25, 2022

Reminders

Scaling Up

* Post-Exam Followup:
— Exam Viewing |
— Exit Poll: Exam 1 . I I & 0. 0
— Grade Summary 1 o e = Vg e

* Homework 4: Logistic Regression
— Out: Fri, Feb 18
— Due: Sun, Feb 27 at 11:59pm

* Homework 5: Neural Networks

— Out: Sun, Feb 27
— Due: Fri, Mar 18 at 11:59pm

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
of units per hidden layer (width)

2.

3. Type of activation function (nonlinearity)
4. Form of objective function

5. How to initialize the parameters

ACTIVATION FUNCTIONS

Activation Functions

Neural Network with sigmoid [(F) Loss]
activation functions

J=35(y—y*)

?

[(E) Output (sigmoid)
1

Output Y = TFexp(=b)

?

[(D) Output (linear)
b=3"1"0B)%

Hidden Layer

?

25 = 14+exp(—aj)’ \V/]

[(C) Hidden (sigmoid)

?

(B) Hidden (linear)
aj = 3,00 Qjitis U

?

(A) Input
Givenz;, Vi

Activation Functions

Neural Network with arbitrary [SF)_'-‘;SS N]
nonlinear activation functions =3y -y

?

[(E) Output (nonlinear)

Output Yy~ O<b)

?

[(D) Output (linear)
b=3"1"0 B2

Hidden Layer

?

[(C) Hidden (nonlinear)
R = a(aj), V]

?

[(B) Hidden (linear)
aj =ity aiti, Vi

?

(A) Input
Given x;, V1

Activation Functions

So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function...

... but the sigmoid
is not widely used
in modern neural
networks

—0.25 1

—0.50 1

—0.75 1

—1.00 4

Sigmoid (aka. logistic) function

1.00 H === =1
o(x) = 1+ exp(—x) 1

0.75 4

0.50 A 4

0.25 4

g
-
-
——————————

0.00 +

- i
-

Hyperbolic tangent function

| = tanh(x)}

0.75 A

0.50 A

0.25 A

0.00 A

Activation Functions

* sigmoid, o(x)
— output in range
(0,1)
— good for

probabilistic
outputs

* hyperbolic
tangent, tanh(x)

— similar shape to
sigmoid, but
output in range (-
1,+1)

—0.25 1

—0.50 1

—0.75 1

—1.00 4

Sigmoid (aka. logistic) function

1

1:00 T s - =
o(x) T T+exp(—x) 1

0.75 4
0.50 A 4

0.25 4

g
-
-
——————————

0.00 +

- i
-

Hyperbolic tangent function

| = tanh(x)}

0.75 A

0.50 A

0.25 A

0.00 A

Understanding the difficulty of training deep feedforward neural networks

Al Stats 2010

— Sigmoid depth 5
~— Sigmoid depth 4
—— Tanh depths
Softsign depth s

80}

70 "r,.
A

| ".‘ Softsign N depths
60/ | '\.ll]' ‘*\1 Tanh N depths
Y :
o i 4‘"\. Pre-training depths
Tso i W‘ "
o l »
5 ‘.'”"o'.h w"‘ﬂ" ’NJ
540 Mol W,Jl) ‘
- ' W LJ"“ . o
u&}«y. ML il sigmoid
N Wit e My
| AR s "y VS.
30 "“ { v.n;\m‘w y-i- w‘-""m\,\\\f
- L wh tanh
b'\“ \ .,‘,‘»,_'.- :‘-}.‘.;.‘-.f"q-‘;l'], !
S8 L1 iy ¥ 4 (AT
L A "":::::'r-f?""'b'VM"\. ;
20 MM\"W\VN\-WV‘\M TN o o
L P
0.0 0.5 1.0 15 2.0 :
exemples seen le7

Figure from Glorot & Bentio (2010)

Activation Functions

Rectified Linear Unit
(ReLU)

— avoids the vanishing
gradient problem

— derivative is fast to
compute

ReLU(z) = max(0, x)

—— RelLU(x) \

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

14

Activation Functions

Rectified Linear Unit
(ReLU)

— avoids the vanishing
gradient problem

— derivative is fast to
compute

ReLU(z) = max(0, x)

Exponential Linear

Unit (ELU)

— same as RelLU on
positive inputs

— unlike ReLU, allows
negative outputs and

smoothly transitions
forx<o

1 === ELU(x)

— RelLU(x)

-
-
-
=3
o ——

ELU(z) = x, ifx >0
N alexp(z) —1), ifz<0

Activation Functions

Image Classification Benchmark (CIFAR-10)

100-

T\ —relu
—leaky

—srelu

—elu

oo
o

Test Error [%]
(@)

40-

0 25 50
Updates (1e3)

Figure from Clevert et al. (2016)

Training loss
converges
fastest with
ELU

ELU(x) yields
lower test
error than
ReLU(x) on
CIFAR-10

16

LOSS FUNCTIONS & OUTPUT
LAYERS

Neural Network for Classification

Output

Hidden Layer

[(E) Output (sigmoid)
1

Y= Trexp(—d)

?

[(D) Output (linear)

b=3;"0 Bz

?

(C) Hidde

Zj—

n (sigmoid)
1

14exp(—a;)’

vj

—/

?

(B) Hidden (linear)

M .
a; = z@':o Q4T vy

?

|

(A) Input
Given Zi, \]

|

Output

Hidden Layer

Neural Network for Regression

(D) Output (lilnear)
y =50 857

?

[(C) Hidden (sigmoid)
1

Zj:

vj

14exp(—a;)’

?

(B) Hidden (linear)
aj = 3,00 @jiti, U

?

(A) Input
Given Zi, \]

Objective Functions for NNs

1.

Quadratic Loss:
— the same objective as Linear Regression

— i.e. mean squared error

1

J=to(y,y") =Sy —y")?
aJ)

2.

Binary Cross-Entropy:
— the same objective as Binary Logistic Regression
— i.e. negative log likelihood
— This requires our output y to be a probability in [0,1]

= ECE(Z/, y) = —(y? log(y) + (1 — y™) log(1 — v))

1
3/(2) (Z))

y—1

4

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,

W respectively on the first layer and W5 on the second,
output layer.

Figure from Glorot & Bentio (2010)

Multiclass Output

Multiclass Output

[(F) Loss

Softmax: J =K yilog(u)

?

eXp (bk') [(E) Output (softmax)

yk - = ;Xp(bk)
zllil eXp(bl) S 2%1 exp(br)

[(D) Output (linear)
b = 31 Brjzs Vk

?

Output

(C) Hidden (nonlinear)
g5 = O'(aj), V]

?

Hidden Layer

(B) Hidden (linear)
a; = 3,00 @jiti, U

?

(A) Input
Given z;, Vi

23

Objective Functions for NNs

Cross-Entropy for Multiclass Outputs:

— i.e. negative log likelihood for multiclass outputs

— Suppose output is a random variable Y that takes one of K values
— Let y® represent our true label as a one-hot vector:

yO=lolo|lo|1]lo|lo]...] 0
1 2 3 4 5 6 .. K

— Assume our model outputs a length K vector of probabilities:

y= SOftmaX(fscores(Xr 9))

— Then we can write the log-likelihood of a single training example (x(, y()
as:

J =tcp(y,y") Zy(" log (yx)

Neural Network Errors

Question X: For which of the datasets below Question Y: For which of the datasets

does there exist a one-hidden layer neural
network that achieves zero classification
error? Select all that apply.

4A) 4 B)
+ + +
s -'-_I"_'+
> >
A C) A D) ++_+
+ + + ==
+ =+, + =+, +
4+ T+ o+
> >

below does there exist a one-hidden layer
neural network for regression that achieves
nearly zero MSE? Select all that apply.

AA) AB)
o
.‘ o.o
> >
40 4 D)
O
o o .' g
e o °

Neural Networks Objectives

You should be able to...

Explain the biological motivations for a neural network

Combine simpler models (e.g. linear regression, binary
logistic regression, multinomial logistic regression) as

components to build up feed-forward neural network

architectures

Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

Compare and contrast feature engineering with learning
features

Identify (some of) the options available when designing
the architecture of a neural network

Implement a feed-forward neural network

APPROACHES TO
DIFFERENTIATION

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{®i, Y, }is 3

79 1) 1=1 C— : : ,
2 0" = arg meméf(fe(wz), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
N T (take small steps
J fe(Z) opposite the gradient)

— Loss function

((9,y,) €R 61 =0 — . Ve(fo(wi), y,)

- VU(fo(xi), y;)

Approaches to

S—
raining Differentiation

* Question 1:
When can we compute the gradients for an
arbitrary neural network?

* Question 2:
When can we make the gradient
computation efficient?

Training

1. Finite Difference Method

Approaches to
Differentiation

Given f : R* = RE, f(x)

Pro: Great for testing implementations of

backpropagation 8f(X)z'

Con: Slow for high dimensional inputs / Compute Vi, J
outputs Ox;
Required: Ability to call the function f(x) on

any input x

2. Symbolic Differentiation

Note: The method you learned in high-school

Note: Used by Mathematica / Wolfram Alpha
[Maple
Pro: Yields easily interpretable derivatives

Con: Leads to exponential computation time
if not carefully implemented

Required: Mathematical expression that
defines f(x)

31

Approaches to

S—
raining Differentiation

3. Automatic Differentiation - Reverse Mode

; . A B
— Note: Called Backpropagation when applied Given f : R™ — R”, f(x)

to Neural Nets 3f(X)i
— Pro: Computes partial derivatives of one Compute B Vi, j
output f(x), with respect to all inputs x; in 14

time proportional to computation of f(x)

— Con: Slow for high dimensional outputs (e.g.
vector-valued functions)

— Required: Algorithm for computing f(x)
4. Automatic Differentiation - Forward Mode

— Note: Easy to implement. Uses dual
numbers.

- Pro: Computes partial derivatives of all
outputs f(x); with respect to one input x; in
time proportional to computation of f(xS

— Con: Slow for high dimensional inputs (e.g.
vector-valued x)

— Required: Algorithm for computing f(x)

32

THE FINITE DIFFERENCE METHOD

Training Finite Difference Method

The centered finite difference approximation is:

9 (JO+e-d)—J(O—c-dy))
%J(é’) R 5 (1)

where d; is a 1-hot vector consisting of all zeros except for the th

entry of d;, which has value 1. N

Notes:

* Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples

with an appropriately
chosen epsilon C L >

Training Differentiation Quiz

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(zz) log(2) | ooy

Answer: Answers below are in the form [dy/dx, dy/dz]

A. [42,-72] E. [1208, 810]
B 72, -42] F. [810,1208]
C. [100,127] G. [1505,94]
D. [127,100] H. [94,1505]

Training Differentiation Quiz

Differentiation Quiz #2:
A neural network with 2 hidden layers can be written as:

y=o(B o((@?) o ((@P)x))
wherey € R, x € RP” 3 ¢ RP® and o isa D& x DGE-1)
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(ay),...,0(ax)]*

Let o be sigmoid: o(a) = 1+e:}3p—a

. Oy Oy .
What is 5z~ and ® forall i, 5.
J

B oo

THE CHAIN RULE OF CALCULUS

Training Chain Rule

Whiteboard
— Chain Rule of Calculus

Training Chain Rule

e

Training Chain Rule

BACKPROPAGATION OF ERRORS

Erro
rB
ack-Propagati
ion

46

Error Back-Propagation

47

Erro
rB
ack-Propag
ation

48

Error Back-Propagation

49

Erro
rB
ack-Propag
ation

50

Err
or B
a
ck-Propag
atio
N

51

Err
or B
a
ck-Propag
atio
N

52

Error Back-Propagation

53

Error Back-Propagation

54

Error Back-Propagation

55

FORWARD COMPUTATION FOR A
COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— From equation to forward computation

— Representing a simple function as a
computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(xz) log () | oy

BACKPROPAGATION FOR A
COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(xz) log () | oy

Training Backpropagation

Simple Example: The goal is to compute J = cos(sin(z?) + 322)

on the forward pass and the derivative j—i on the backward pass.
Forward
J = cos(u)

U = Ui + U9

up = sin(t)

Training

Simple Example:

Backpropagation

The goal is to compute J = cos(sin(z?) + 3z°)

on the forward pass and the derivative fi—i on the backward pass.

Forward

J = cos(u)
U = Ui + U9

up = sin(t)

Backward
Z—i += —sin(u)
0, dJdu e A dTdu du
du1 du duy’ dug duo du dus’ dus
ﬂ += d—J% % = cos(t)
dt dui dt = dt
A, Al du du
dt dus dt = dt
dJ dJ dt dt
21

—_— = — — — =
dx dt dx’ dx

Training Backpropagation

Case 1:
Logistic
Regression

Forward

J =y logy + (1 —y*)log(l —y)

Training

Case 1:
Logistic
Regression

Forward

J =y logy + (1 - y") log(1 — y)

1
YT+ exp(—a)

D
a=) bz
j=0

Backpropagation

Backward

dJ * 1 — o
_y d-y)

dy y y — 1

dJ . dJ dy dy _ exp(—a)

df; — da df;’ do;

dr; dadzx;’ dz;

da dyda’ da (exp(—a)+1)2
dJ dJ da da

103

dJ _dJ da da

=0,

TRAINING /| FORWARD COMPUTATION
| BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

@ ‘ e
\ (ieﬁ: y= (B2 Ro)
S B @ L_T PRAVE 301

q’r_-;a ,I],\ i;_z»,_;:%; Py P N, = - -
'-,,..% T[:tf’-":‘;::t:;;:&i__';::\'“ ‘ -) "\ — (2 a (2) 1“'
l‘ FL---‘J%{’:{h...f‘..-.'x::(~-__L,_x____%%—_:‘:x%x)} T (2) D ~"-') -6_((N) 2(‘) f g(Z))
‘f-j {:—'— ‘l, ‘l::.; »

[4%

I]~ oL ¢ MxD,

50)
| % - =K b((l)-'— Q)
§ & & R =Y

67

Training Backpropagation

Whiteboard

— Example: Backpropagation for Neural Network
with 2-Hidden Layers
* SGD Training
* Forward Computation
* Computation Graph
* Backward Computation

