10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

CNNs
+

PAC Learning

Matt Gormley
Lecture 14
Mar. 14, 2022

Reminders

* Homework 5: Neural Networks

— Out: Sun, Feb 27
— Due: Fri, Mar 18 at 11:59pm

Peer Tutoring

Question:

Have you
studied
dynamic
programming
in a previous

course?
A. Yes
B. No

Answer:

Dynamic Programming

Question:

What is the difference between memoization and dynamic
programming, when applied to a recursive function f(x)?

A.

B.

memoization computes a function recursively without storing
intermediate results, whereas dynamic programming stores
intermediate results

memoization stores function values as they are encountered
top-down, whereas dynamic programming stores function
values as they are encountered bottom-up

memoization stores only the output of a tertiary function g(x),
whereas dynamic programming stores the outputs of f(x)
directly

memoization typically increases computational complexity of
an algorithm while decreasing space complexity, whereas
dynamic programming typically decreases computational
complexity and increases space complexity

memoization memorizes a function, whereas dynamic
programming has a programmer generate code for the
function on-the-fly (i.e. answered “Yes” to previous question)

Answer:

BACKGROUND: COMPUTER VISION

Example: Image Classification

IMSAGENET B | oo
- T AT : About = Download

Not logged in. Login | Signup

Bird el
2126 92.85% <4
Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures ngcu;?\rt'.tlg %grdnet

;- marine animal, marine creature, sea animal, sea creature (1)
+ scavenger (1) Treemap Visualization Images of the Synset Downloads
- biped (0)
;- predator, predatory animal (1)
i larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
“. chordate (3087)
| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
¢ mammal, mammalian (1169)
+- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
i cock (1)
- hen (0)
- nester (0)
i~ night bird (1)
- bird of passage (0)
- protoavis (0)
- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)
- |bero-mesornis (0)
- archaeornis (0)
i ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
i passerine, passeriform bird (279)
- nonpasserine bird (0)
.- bird of prey, raptor, raptorial bird (80)
: gallinaceous bird, gallinacean (114)

IMAGENET - i [l

synsets indexed

Not logged in. Login | Signup

5 . . =
German iris, Iris kochii 469 49.6% L
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggpcugﬂrtlﬁg l\ggrdnet

- halophyte (0)
i succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

i weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

i woody plant, ligneous plant (1868)

- geophyte (0)

I desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

7~ bulbous plant (179)

“. iridaceous plant (27)

+. iris, flag, fleur-de-lis, sword lily (19)

“. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

IMAGENET 1 550 | comion:

, 122 images, 21841 synsets indexed

Not logged in. Login | Signup

G=
Court, courtyard 165 92.61% L)

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ggpcu;ﬂft'tlg l\ggfdnet
]

& Numbers in brackets: (the number of synsets in the subtree). Treemap Visualization Images of the Synset Downloads

“. ImageNet 2011 Fall Release (32326)
1 plant, flora, plant life (4486)
- geological formation, formation (175)
=~ natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
- instrumentality, instrumentation (5494)
¥ structure, construction (1405)
- airdock, hangar, repair shed (0)
| altar (1)
| arcade, colonnade (1)
| arch (31)
¥- area (344)
- aisle (0)
f--- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
.- corner, nook (2)
+. court, courtyard (6)
- atrium (0)
- bailey (0)
- cloister (0)
- food court (0)

- forecourt (0)
.. narvie (NY

Z o= P -~
s == el 1 RAOO0 wld T

Feature Engineering for CV

Edge detection (Canny)

Original Image

Edge Image

Corner Detection (Harris)

.
Y Sl

Figures from http://opencv.org

Scale Invariant Feature Transform (SIFT)

Scale ﬁ M
el I%y—»ﬁ

Scale
(first
octave)

Difference of
Gaussian (DOG)

Gaussian

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

igure 3: Model images of planar objects are shown in the ; B |) i -
»p row. Recognition results below show model outlines and to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
L oo

Aawn_camnlad hu a factar af 7 and tha nracace raneatad

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

5 e

CNNs for Image Recognition

Slide from Kaiming He

Research
Revolution of Depth 28.2
152 layers
&
\
\
\
\
\
\
\
22 layers I ‘ 19 Iayers ’
\ 6.7
3 57 l_ I [8 layers J L«Iayers shallow
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
| ImageNet Classification top-5 error (%)
T%ICCV T
e —— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
13

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply
fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary
gradients.

CONVOLUTION

What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
““features’ from an image
— All that we need to vary to generate these different features is the

weights of F
/x % 1 iavd" clu«w.‘ p j. ou-"Yo“' CLOWI\L‘
’:—E?-di CP"‘V _Q_J_‘\?i 7" = Ky Xu * KX +0Q1% 4 032 %2 +0
2 KaXg * Kpxg + 091Xz 4 K3z X
X Y | Xs E(u &z ")' 12 z X3 2z X253 ol
Xor |%ez|%s ! [_o_a',«a B 7L iﬁ Yoo = K)oy, * KipXy +0QiXs) + X3z Xs2 4,
- \ 2
l(s‘ X3 > >I¢'Z - kl!)(zl + K‘L‘XZ} 40&| XS?. 4 “ZZ)(33 +,

Slide adapted from William Cohen

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

17

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

18

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

19

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

20

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

21

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3

22

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3| 2

23

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

31212

24

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

312123

25

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

26

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

27

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

28

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

29

Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity

Convolution 111 (1] 1]1
O|0]|O 1

ol 1 0o 1

O|0]|O 1

30

Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image
Blurring
Convolution

31

What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v L04ad|

Use filtered imagel

Filter

m

Q.
0Q

(M
>
4>

Ov/|-1% | 2%
Ov/| 49| 1%
O¢/| O¢v|| O%
Filter normalization

O Apply filter

Slide from William Cohen

What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v LO_adI

Use filtered imagel

Filter

m

Q.
0Q

¢
>
4>

29| -1%|| O%
19| 4%|| O¥
O¢/| O¢v|| O¥%
Filter normalization

O Apply filter

Slide from William Cohen

What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

— '."'_ Rice ¢L04ad|

Use filtered image|

Filter
Edge]
Oy 1% | 2%
O¢v | 457 -1+%
Ov Ov Ov
Filter normalization

<>

O Apply filter

Slide from William Cohen

What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v L04ad|

Use filtered image|

Filter

m

Q.
0q

¢
>
4>

2% -1%/| O%
19/ 4%/| O%
Ov | O/ | O¥
Filter normalization

O Apply filter

Slide from William Cohen

What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
““features’ from an image
— All that we need to vary to generate these different features is the

weights of F
/x % 1 iavd" clu«w.‘ p j. ou-"Yo“' CLOWI\L‘
’:—E?-di CP"‘V _Q_J_‘\?i 7" = Ky Xu * KX +0Q1% 4 032 %2 +0
2 KaXg * Kpxg + 091Xz 4 K3z X
X Y | Xs E(u &z ")' 12 z X3 2z X253 ol
Xor |%ez|%s ! [_o_a',«a B 7L iﬁ Yoo = K)oy, * KipXy +0QiXs) + X3z Xs2 4,
- \ 2
l(s‘ X3 > >I¢'Z - kl!)(zl + K‘L‘XZ} 40&| XS?. 4 “ZZ)(33 +,

Slide adapted from William Cohen

DOWNSAMPLING

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

43

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

44

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

45

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

46

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

47

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

48

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

49

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

50

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

51

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution

52

Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolved Image

Convolution

53

Max-Pooling

Max-pooling is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,55
Tit1,5+1)

54

CONVOLUTIONAL NEURAL NETS

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)

-V fo(xi), ;)

Convolutional Layer

Input Image

CNN key idea:
Treat convolution matrix as

parameters and learn them!

@ Convolved Image

Learned
Convolution

e11 e12 e13
e21 e22 e23
0, 0;, |05

59

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@26x25 S2: f. maps
6@14x14 r

I
| Full oonrlection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

60

TRAINING CNNS

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)

-V fo(xi), y;)

SGD for CNNs

[SG\J fe COU- |
Ex: Acchidechoe : Gaer ,?, y‘*
3= Ay

7= s&mx(z(s» ?Mmk} —é:’" Y_N) B lf\)—&

29+ fuee (2, W)

<P el (2(3)) @'\

0, con(2B) oI+ &
- ool (2 @ Ll sk ormel:
Z(.) = pax-po .I(“) Semple & € Ty, M2
Z = Cowny (;, OO Rrva t y = he(sz(l))) 31(9) ‘1(7,7")

Baclewesd: Vé?)'; (@):h.
Uke: B +— 3 - nvsni6)

LAYERS OF A CNN

RelLU Layer
[ReLU L“W I*Vu’m?eRK Ok - 75;{“

F:rw‘fé L Cwe,cl' 1] cl,_w\gl
/7:0-(?) et 3~/43' :4-5- d Lon e
O'{a) = \Max(()’q) dx._ AYL dy 90L:

whast :
O« * \= | 5 x: >0
M’() (O o-l'qu‘;q

68

Softmax Layer

|

|SShLager]

IA‘)U"" ?&RK D‘,.\?o-[-: ?EKK

’Ferw'u‘:l s 'Bac.luu-acl .
iE: { K &5 dy:
7 = Splad STk
% exf(xk\ AXJ S\ AXJ

Whase éxz __{y;(l-yc) F =)
&x:) m)l(:\/j oLw'wt'K

Fully-Connected Layer

| Flly el T | (if s ingeh)

L 4“’\’("’* npet B o Toer: x _ ~
i 1
c”T T
- Shekbot o 4 oy weke g MRl)
il +LM g(‘wévé /[M Z*Zu 7 " (CxHxW)

\/- vl X“'O(whese NGKAXB
\Q\"A /\‘/'3.B

Convolutional Layer

/L': N ;A?J" cheane
L.
oot Conv
xﬂXuz)‘13 B‘ &2
— ?
Xor |Xex |4 [56: Joces.
K | Xl

oU‘To“' CLawM. l

Oipt

Yoe

y&.

2 OO“Y«J“' CL‘\M\LlS

lgu\' C_c»«viil

X ‘Xuz)‘13) E:" bqa
Xe, | ez |¥s 01 |ocez |
Xa1 | %selXsy
Comi?
b E((:# iz
(51 |ocen

a ON

Y = KaXu * KX +0G1% 4 0%z +u,
}’\2 > KaXg * Kpxg +0Q1 X0 + Koz Xz 1ot
)’u = KuXy * KigXyy +0QiXg + 03z Xgp o
Y2z = XuXgp * Kighay +0Gi X5y 4 gz Xg3 +4,

q), Q) Q) O)
yl(ln i “'l Xn + Klz_xQ + lxu 4 O(ZZXZ.‘L +0(

0)

W2 F s

0)

] = & ~ -

0) m Q) . ()
>’22 - “l! le Kllxz3 + Dg' x’z 4 “zz X33 +N°(')

@ @ = (2
7” = KyXn * klz_xl?. ""%lxm + “zz\(zg_'fd’

(

y\Z’ 6o o

@

%. = e ~ -

Q) ® (2 2) (2 (2)
>I2'Z KXnXze + KipXn + 1 X2 + 022 Xg3 +00y

Convolutional Layer

e T TR
EX' C "‘?“* cheanels , C ou\'fd" CL'-MIS J‘\’l‘ So\’ ?“""4 WA'G\

Ty p=c SRR R Rk 15 it

\ %

é’\lj“i/y J;(—K ih {ﬂ" (H = 16 2p-1)/6 + |
W \\ P < WP W = L(WIVZ?'TK)/S +/_l

C kx (YN C L
e . = () boce M= S(L")*t
/5 = % +;?Trzi " KXo W $G=Drr
\,"
gl Ny
¢ (e
© v ZZ "’iym A
A P /9 p: :3"’-‘-50\(
dJ . . oy) .
AD‘%‘?'?? Iy —w cakols

72

_\

Max-Pooling Layer

i»‘\-)(’ CL«-.AN.‘ y i OU"'Y«)“’ CLanM‘/ Q“ﬂ'é.ﬂ G\S 1

?

Yool Size

Ot

Yz

\

er.

Ju *-'W‘X(Xu ;) X Xy

A 2 (Xe) xg 1 Km o

)l"' = Max ()‘z|)

>I2'Z =Mn)X (le |

XZZI

Xz} f

X31

Xep

\(7.7-\
X23)

Xs2)

Xz3)

Max-Pooling Layer

[FoxRookny Lo

- (k)
Il\ u\‘ . . _O’,,‘\'_&t‘. Y':
())
XE;) HT HD Co £ C.L
= 03
L 5 o _. QS a5 Conv. fayer
e EERE™, Bl IRe" ot b ’
};w«té . S‘M ﬂ”
-’—F/_ &C‘CU‘\fl;
(k) (k) _
5= Max = s(-N)*q, _A;S_ = 1(
T S S S
C ezl

N (e Mo wok ESovrdable, bot
@ * o ifrerhble.
& Tles are 4 set a‘P desivedives and

Wwe c¢aa g')os&' C hoow our kr SGD.
y= w.ax(a)),)
':—7£__A;S-_c(\ _é;‘-: 1 }$G>b
da” dy_gé- whet 0 oflewise J

74

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@26x25 S2: f. maps
6@14x14 r

I
| Full oonrlection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

75

Architecture #2: AlexNet

CNNs for Image Recognition

Slide from Kaiming He

Research
Revolution of Depth 28.2
152 layers
&
\
\
\
\
\
\
\
22 layers I ‘ 19 Iayers ’
\ 6.7
3 57 l_ I [8 layers J L«Iayers shallow
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
| ImageNet Classification top-5 error (%)
T%ICCV T
e —— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
77

CNN VISUALIZATIONS

3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/

Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

e Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

3 1

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[2501 w0[:,:,0] wl[:,:,0] ofz,2,0]
0 0 0 0 0 0 O -101 1 [1 S5 -3 3
02 w/é/-——‘l/-l 1|1 =51 B 7
0O 0211210 O 1 0 -1 101 fj-1 =3 =2
0O 1]2 10 JjO o[:,:,1]
o 2 o] =]
021 0 0 2 (EE] =
000 0 0 : 2 [
Kbty sl W(l) \ '12] 21/[-1 =

0000 0 00 ol 3 =4

0 1 1) -1 1 1 #4111

o 22z [z 1] o L

(9012810012 Bjas b0 (1x1x Bias b1 (1x1x1)

o 2 [0 2)"2é1 0[:,:, [:,:,0]
001000 O 1 5

0O 0 0 0 O

X[3,:,2] toggle movement

0 0 0 O 0

0 0 00 2 0

0 2 |11 |1 0

0 2 (off2k0]o o

o o2t [z]1 "0

0 1 2 0 O 0

0O 0 0 0 0 0 O

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization

input (24x24x1) Activations:
max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - -)
max activation: 4.78388, min: -3.44063 - C A
max gradient: 0.00005, min: -0.00006 —
parameters: 8x5x5x1+8 = 208 Activation Gradients:

Weights:

(")(F')(‘-)() (88)(I)(F)(<4

Weight Gradients:

() (i) () () (T)()()(W)
softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 i EEEEEEEE

max gradient: 0, min: 0

Example predictions on Test set

/e L T G | < N
_ 4 I .
/§ HE | § Bl

Figure from Andrej Karpathy

82

CNN Summary

CNNs

— Are used for all aspects of computer vision, and
have won numerous pattern recognition
competitions

— Able learn interpretable features at different levels
of abstraction

— Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:

— Readings on course website
— Andrej Karpathy, C5231n Notes

http://cs231n.github.io/convolutional-networks/

Deep Learning Objectives

You should be able to...

Implement the common layers found in Convolutional
Neural Networks (CNNs) such as linear layers,
convolution layers, max-pooling layers, and rectified
linear units (ReLU)

Explain how the shared parameters of a convolutional
layer could learn to detect spatial patterns in an image

Describe the backpropagation algorithm for a CNN

|dentify the parameter sharing used in a basic recurrent
neural network, e.g. an Elman network

Apply a recurrent neural network to model sequence
data

Differentiate between an RNN and an RNN-LM

ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction?)
boolean Binary Classification] :E)
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %56
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=29
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards

LEARNING THEORY

PAC(-MAN) Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 11-20

C. 2130

Questions for today (and next lecture)

1.

Given a classifier with zero training error,
what can we say about true error (aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)

88

PAC/SLT Model for Supervised ML

!

h(x)

89

PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs, y € Y
— Distribution over instances, p*(-)
— Exists an unknown target function, c* : X— Y

— Set, H, of candidate hypothesis functions, h: X— Y

* Learner is given N training examples

D = {(x(1) y 1)), x(Z), y(z)), ey (x(N), y(N))}
where x(~ p*%-) and yl) = ¢*(x®M)

* Learner produces a hypothesis function, § = h(x), that
best approximates unknown target function y = ¢*(x) on
the training data

PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs,y €Y

— Distribution |%_nstances, p*(+)
_ EXiStS an un _-I-_:m-l' fiinctinn % . ’y‘i 1l

Two important settings we’ll

— Set, H, of candida consider:

. Learne(f)is 1)iven(lz\§ 1. Classification: the possible
D = {(x, y*V), EX | outputs are discrete

) a
2. Regression: the possible

* Learnerproducesd gutputs are real-valued
best approximates

the training data

where x() ~ p*

PAC/SLT Model for Supervised ML

Test Error Rate

Two Types of Error

1. True Error (aka. expected risk)

R(h) = Pxp=(x)(c"(X) # h(x)) T’f”'s qu

2. Train Error (aka. empirical risk) “"knolj/)”f
R(h) = Pyus(c*(x) # h(x))

W
LS (e oy omSsur
=N L(c"(x™) # h(x™)) "the trar s
i=1 dal'a ”7”78-
1))
=~ 2 1Y # h(x™))
1=1
where S = {x(I), ... x(™ IV s the training data set, and x ~

S denotes that x is sampled from the empirical distribution.

l[{l/;f;ve 6/50
PAC/SLT Model /mgiiin,

on'ikon
. Generate instances from unknown distribution p*
x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y(i) =c" (X(i)), V1 (2)

. Learning algorithm chooses hypothesis i € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)

Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

y =" (x"), Vi (1)
The expected risk minimizer has lowest true error:
Question:
* _ : True or False:
= arhgg{m k(h) h* and c* are
always equal.
The empirical risk minimizer has lowest training error:
h = argmin R(h) (3)

heH

PAC LEARNING

Probably Approximately Correct

(PAC) Learning

Whiteboard:

— PAC Criterion

— Meaning of “Probably Approximately Correct”

— Def: PAC Learner

— Sample Complexity

— Consistent Learner

— Realizable vs. Agnostic Cases

— Finite vs. Infinite Hypothesis Spaces

SAMPLE COMPLEXITY RESULTS

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to1).

We'll start with the
Four Cases we care about... -ﬁnite case...

Realizable 7 Agno?

Finite |H,|

Infinite |H|

Probably Approximately Correct

(PAC) Learning
Whiteboard:

— Theorem 1: Realizable Case, Finite |H|
— Proof of Theorem 1

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te ‘H‘ probability (1—4) all h € ‘H with R(h) =0
have R(h) < e.

Infinite ||

Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}V

Example hypotheses:
h(x) = X, (1-X3) X4
h(x) = x, (1-x,) X4 (1'X5)

If M =10, € = 0.1, 5 = 0.01, how
many examples suffice
according to Theorem 1?

Answer:

10*(2*In(10)+In(100)) = 92
10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100)) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10)) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10)) = 924
100*(10*In(3)+In(10)) = 1329

ITommonN®

Thm. 1 N > 1[log(|H|) + log(5)] le-
beled examples are sufficient so that with
probability (1 —4) allh € H with R(h) =0

have R(h) < e.

