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Reminders

* Homework 5: Neural Networks

— Out: Sun, Feb 27
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Question:

Have you
studied
dynamic
programming
in a previous

course?
A. Yes
B. No

Answer:

Dynamic Programming

Question:

What is the difference between memoization and dynamic
programming, when applied to a recursive function f(x)?

A.

B.

memoization computes a function recursively without storing
intermediate results, whereas dynamic programming stores
intermediate results

memoization stores function values as they are encountered
top-down, whereas dynamic programming stores function
values as they are encountered bottom-up

memoization stores only the output of a tertiary function g(x),
whereas dynamic programming stores the outputs of f(x)
directly

memoization typically increases computational complexity of
an algorithm while decreasing space complexity, whereas
dynamic programming typically decreases computational
complexity and increases space complexity

memoization memorizes a function, whereas dynamic
programming has a programmer generate code for the
function on-the-fly (i.e.  answered “Yes” to previous question)

Answer:



BACKGROUND: COMPUTER VISION



Example: Image Classification
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+ scavenger (1) Treemap Visualization Images of the Synset Downloads
- biped (0)
;- predator, predatory animal (1)
i larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
“. chordate (3087)
| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
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+- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
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Feature Engineering for CV

Edge detection (Canny)

Original Image

Edge Image

Corner Detection (Harris)

.
Y Sl

Figures from http://opencv.org

Scale Invariant Feature Transform (SIFT)

Scale ﬁ M
el I%y—»ﬁ

Scale
(first
octave)

Difference of
Gaussian (DOG)

Gaussian

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

igure 3: Model images of planar objects are shown in the ; B | ) i -
»p row. Recognition results below show model outlines and to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
L oo

Aawn_camnlad hu a factar af 7 and tha nracace raneatad

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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CNNs for Image Recognition

Slide from Kaiming He

Research
Revolution of Depth 28.2
152 layers
&
\
\
\
\
\
\
\
22 layers I ‘ 19 Iayers ’
\ 6.7
3 57 l_ I [ 8 layers J L«Iayers shallow
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
| ImageNet Classification top-5 error (%)
T%ICCV T
e —— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
13



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply
fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary
gradients.



CONVOLUTION



What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
““features’ from an image
— All that we need to vary to generate these different features is the

weights of F
/x % 1 iavd" clu«w.‘ p j. ou-"Yo“' CLOWI\L‘
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2 KaXg * Kpxg + 091Xz 4 K3z X
X Y | Xs E(u &z " )' 12 z X3 2z X253 ol
Xor |%ez|%s ! [_o_a',«a B 7L iﬁ Yoo = K)oy, * KipXy +0QiXs) + X3z Xs2 4,
- \ 2
l(s‘ X3 > >I¢'Z - kl!)(zl + K‘L‘XZ} 40&| XS?. 4 “ZZ )(33 +,

Slide adapted from William Cohen



Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity

Convolution 111 (1] 1]1
O|0]|O 1

ol 1 0o 1

O|0]|O 1
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image
Blurring
Convolution

31



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v L04ad|

Use filtered imagel

Filter

m

Q.
0Q

(M
>
4>

Ov/|-1% | 2%
Ov/| 49| 1%
O¢/| O¢v|| O%
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?
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What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image
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Use filtered image|

Filter
Edge ]
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Filter normalization
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What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
““features’ from an image
— All that we need to vary to generate these different features is the

weights of F
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X Y | Xs E(u &z " )' 12 z X3 2z X253 ol
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Slide adapted from William Cohen



DOWNSAMPLING



Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution
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Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolved Image

Convolution
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Max-Pooling

Max-pooling is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,55
Tit1,5+1)
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CONVOLUTIONAL NEURAL NETS



A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)



-V fo(xi), ;)




Convolutional Layer

Input Image

CNN key idea:
Treat convolution matrix as

parameters and learn them!

@ Convolved Image

Learned
Convolution

e11 e12 e13
e21 e22 e23
0, 0;, |05

59



Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@26x25 S2: f. maps
6@14x14 r

I
| Full oonrlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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TRAINING CNNS



A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)



-V fo(xi), y;)




SGD for CNNs
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LAYERS OF A CNN



RelLU Layer
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Softmax Layer
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Fully-Connected Layer
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Convolutional Layer
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Convolutional Layer
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\_\

Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@26x25 S2: f. maps
6@14x14 r

I
| Full oonrlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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Architecture #2: AlexNet




CNNs for Image Recognition

Slide from Kaiming He

Research
Revolution of Depth 28.2
152 layers
&
\
\
\
\
\
\
\
22 layers I ‘ 19 Iayers ’
\ 6.7
3 57 l_ I [ 8 layers J L«Iayers shallow
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
| ImageNet Classification top-5 error (%)
T%ICCV T
e —— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
77



CNN VISUALIZATIONS



3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/




Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

e Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28

3 1

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)




Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[ 2501 w0[:,:,0] wl[:,:,0] ofz,2,0]
0 0 0 0 0 0 O -101 1 [ 1 S5 -3 3
02 w/é/-——‘l/-l 1|1 =51 B 7
0O 0211210 O 1 0 -1 101 fj-1 =3 =2
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000 0 0 : 2 [
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0000 0 00 ol 3 =4

0 1 1 ) -1 1 1 #4111
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0 0 0 O 0

0 0 00 2 0

0 2 |11 |1 0
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0 1 2 0 O 0
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)


http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization

input (24x24x1) Activations:
max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - - )
max activation: 4.78388, min: -3.44063 - C A
max gradient: 0.00005, min: -0.00006 —
parameters: 8x5x5x1+8 = 208 Activation Gradients:

Weights:

(")(F')(‘-)( ) (88)(I)(F)(<4

Weight Gradients:

() (i) () () (T)()()(W)
softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 i EEEEEEEE

max gradient: 0, min: 0

Example predictions on Test set

/e L T G | < N
_ 4 I .
/§ HE | § Bl

Figure from Andrej Karpathy
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CNN Summary

CNNs

— Are used for all aspects of computer vision, and
have won numerous pattern recognition
competitions

— Able learn interpretable features at different levels
of abstraction

— Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:

— Readings on course website
— Andrej Karpathy, C5231n Notes


http://cs231n.github.io/convolutional-networks/

Deep Learning Objectives

You should be able to...

Implement the common layers found in Convolutional
Neural Networks (CNNs) such as linear layers,
convolution layers, max-pooling layers, and rectified
linear units (ReLU)

Explain how the shared parameters of a convolutional
layer could learn to detect spatial patterns in an image

Describe the backpropagation algorithm for a CNN

|dentify the parameter sharing used in a basic recurrent
neural network, e.g. an Elman network

Apply a recurrent neural network to model sequence
data

Differentiate between an RNN and an RNN-LM



ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification ] :E)
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete  Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %56
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=29
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards



LEARNING THEORY



PAC(-MAN) Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 11-20

C. 2130



Questions for today (and next lecture)

1.

Given a classifier with zero training error,
what can we say about true error (aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)
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PAC/SLT Model for Supervised ML

!

h(x)
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PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs, y € Y
— Distribution over instances, p*(-)
— Exists an unknown target function, c* : X— Y

— Set, H, of candidate hypothesis functions, h: X— Y

* Learner is given N training examples

D = {(x(1) y 1)), x(Z), y(z)), ey (x(N), y(N))}
where x( ~ p*%-) and yl) = ¢*(x®M)

* Learner produces a hypothesis function, § = h(x), that
best approximates unknown target function y = ¢*(x) on
the training data



PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs,y €Y

— Distribution |%_nstances, p*(+)
_ EXiStS an un _-I-_:m-l' fiinctinn % . ’y‘i 1l

Two important settings we’ll

— Set, H, of candida consider:

. Learne(f)is 1)iven(lz\§ 1. Classification: the possible
D = {(x, y*V), EX | outputs are discrete

) a
2. Regression: the possible

* Learnerproducesd  gutputs are real-valued
best approximates

the training data

where x() ~ p*




PAC/SLT Model for Supervised ML

Test Error Rate



Two Types of Error

1. True Error (aka. expected risk)

R(h) = Pxp=(x)(c"(X) # h(x)) T’f”'s qu

2. Train Error (aka. empirical risk) “"knolj/)”f
R(h) = Pyus(c*(x) # h(x))

W
LS (e oy omSsur
=N L(c"(x™) # h(x™)) "the trar s
i=1 dal'a ”7”78-
1 ) )
=~ 2 1Y # h(x™))
1=1
where S = {x(I), ... x(™ IV s the training data set, and x ~

S denotes that x is sampled from the empirical distribution.



l[{l/;f;ve 6/50
PAC/SLT Model /mgiiin,

on'ikon
. Generate instances from unknown distribution p*
x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y(i) =c" (X(i)), V1 (2)

. Learning algorithm chooses hypothesis i € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

y =" (x"), Vi (1)
The expected risk minimizer has lowest true error:
Question:
* _ : True or False:
= arhgg{m k(h) h* and c* are
always equal.
The empirical risk minimizer has lowest training error:
h = argmin R(h) (3)

heH



PAC LEARNING



Probably Approximately Correct

(PAC) Learning

Whiteboard:

— PAC Criterion

— Meaning of “Probably Approximately Correct”

— Def: PAC Learner

— Sample Complexity

— Consistent Learner

— Realizable vs. Agnostic Cases

— Finite vs. Infinite Hypothesis Spaces



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to1).

We'll start with the
Four Cases we care about... -ﬁnite case...

Realizable 7 Agno?

Finite |H,|

Infinite |H|




Probably Approximately Correct

(PAC) Learning
Whiteboard:

— Theorem 1: Realizable Case, Finite |H|
— Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te ‘H‘ probability (1—4) all h € ‘H with R(h) =0
have R(h) < e.

Infinite ||




Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}V

Example hypotheses:
h(x) = X, (1-X3) X4
h(x) = x, (1-x,) X4 (1'X5)

If M =10, € = 0.1, 5 = 0.01, how
many examples suffice
according to Theorem 1?

Answer:

10*(2*In(10)+In(100 )) = 92
10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100 )) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10 )) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10 )) = 924
100*(10*In(3)+In(10)) = 1329

ITommonN®

Thm. 1 N > 1[log(|H|) + log(5)] le-
beled examples are sufficient so that with
probability (1 —4) allh € H with R(h) =0

have R(h) < e.




