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Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 27
– Due: Fri, Mar 18 at 11:59pm
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Answer:

Dynamic Programming
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Question:
Have you 
studied 
dynamic 
programming 
in a previous 
course?

A. Yes

B. No

Answer:

Question:
What is the difference between memoization and dynamic 
programming, when applied to a recursive function f(x)?

A. memoization computes a function recursively without storing 
intermediate results, whereas dynamic programming stores 
intermediate results

B. memoization stores function values as they are encountered 
top-down, whereas dynamic programming stores function 
values as they are encountered bottom-up

C. memoization stores only the output of a tertiary function g(x), 
whereas dynamic programming stores the outputs of f(x) 
directly

D. memoization typically increases computational complexity of 
an algorithm while decreasing space complexity, whereas 
dynamic programming typically decreases computational 
complexity and increases space complexity

E. memoization memorizes a function, whereas dynamic 
programming has a programmer generate code for the 
function on-the-fly (i.e. I answered “Yes” to previous question)



BACKGROUND: COMPUTER VISION
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Example: Image Classification
• ImageNet LSVRC-2011 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Feature Engineering for CV
Edge detection (Canny)
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Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) are simply 

fancy computation graphs (aka. hypotheses or 
decision functions).

Our recipe also applies to these models and 
(again) relies on the backpropagation 
algorithm to compute the necessary 

gradients.
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CONVOLUTION
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What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 
replace the pixel in the center of the field with the output of the 
inner product operation

• Key point:
– Different convolutions extract different types of low-level 

“features” from an image
– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen
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What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo
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What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 
replace the pixel in the center of the field with the output of the 
inner product operation

• Key point:
– Different convolutions extract different types of low-level 

“features” from an image
– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



DOWNSAMPLING
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

50

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling by Averaging
• Downsampling by averaging is a special case of convolution 

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2
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Max-Pooling
• Max-pooling is another form of downsampling
• Instead of averaging, we take the max value within the same range as 

the equivalently-sized convolution
• The example below uses a stride of 2
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CONVOLUTIONAL NEURAL NETS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

57

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

58

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide 
another form of decision function

• Let’s see what they look like…



Convolutional Layer
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

60

Architecture #1: LeNet-5



TRAINING CNNS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

63

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Q: Now that we have the CNN 
as a decision function, how do 
we compute the gradient?

• A: Backpropagation of course!



SGD for CNNs
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LAYERS OF A CNN
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ReLU Layer
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Softmax Layer
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Fully-Connected Layer
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Convolutional Layer
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Convolutional Layer
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Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies
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Architecture #1: LeNet-5



Architecture #2: AlexNet
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
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• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



CNN VISUALIZATIONS
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3D Visualization of CNN
http://scs.ryerson.ca/~aharley/vis/conv/



Convolution of a Color Image
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

• Color images consist of 3 floats per pixel for 
RGB (red, green blue) color values

• Convolution must also be 3-dimensional



Animation of 3D Convolution
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


MNIST Digit Recognition with CNNs 
(in your browser)

82

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy



CNN Summary
CNNs
– Are used for all aspects of computer vision, and 

have won numerous pattern recognition 

competitions

– Able learn interpretable features at different levels 

of abstraction

– Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:
– Readings on course website

– Andrej Karpathy, CS231n Notes

http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/


Deep Learning Objectives
You should be able to…
• Implement the common layers found in Convolutional 

Neural Networks (CNNs) such as linear layers, 
convolution layers, max-pooling layers, and rectified 
linear units (ReLU)

• Explain how the shared parameters of a convolutional 
layer could learn to detect spatial patterns in an image

• Describe the backpropagation algorithm for a CNN

• Identify the parameter sharing used in a basic recurrent 
neural network, e.g. an Elman network

• Apply a recurrent neural network to model sequence 
data

• Differentiate between an RNN and an RNN-LM
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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PAC(-MAN) Learning
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1. True Error

2. Training Error

Question 1:
What is the probability that 
Matt get a Game Over in PAC-
MAN?

A. 90%
B. 50%
C. 10%

Question 2:
What is the expected number 
of PAC-MAN levels Matt will 
complete before a Game-
Over?

A. 1-10
B. 11-20
C. 21-30



Questions for today (and next lecture)
1. Given a classifier with zero training error, 

what can we say about true error (aka. 
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about true error (aka. 
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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c*(x)

PAC/SLT Model for Supervised ML
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x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

Dtrain

Learning Algorithm

h(x)
A

B B
0 1

0 1 0 1
+ C

0 1
- +

C
0 1

-

- +

x(i) ~ p*(·)



PAC/SLT Model for Supervised ML
• Problem Setting

– Set of possible inputs, x ∈" (all possible patients)
– Set of possible outputs, y ∈ # (all possible diagnoses)
– Distribution over instances, p*(·)
– Exists an unknown target function, c* : "→#

(the doctor’s brain)
– Set, ℋ, of candidate hypothesis functions, h : "→#

(all possible decision trees)
• Learner is given N training examples 

D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}
where x(i) ~ p*(·) and y(i) = c*(x(i))
(history of patients and their diagnoses)

• Learner produces a hypothesis function, ŷ̂ = h(x), that 
best approximates unknown target function y = c*(x) on 
the training data
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PAC/SLT Model for Supervised ML
• Problem Setting

– Set of possible inputs, x ∈" (all possible patients)
– Set of possible outputs, y ∈ # (all possible diagnoses)
– Distribution over instances, p*(·)
– Exists an unknown target function, c* : "→#

(the doctor’s brain)
– Set, ℋ, of candidate hypothesis functions, h : "→#

(all possible decision trees)
• Learner is given N training examples 

D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}
where x(i) ~ p*(·) and y(i) = c*(x(i))
(history of patients and their diagnoses)

• Learner produces a hypothesis function, ŷ̂ = h(x), that 
best approximates unknown target function y = c*(x) on 
the training data
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Two important settings we’ll 
consider:
1. Classification: the possible 

outputs are discrete
2. Regression: the possible 

outputs are real-valued



c*(x)

PAC/SLT Model for Supervised ML
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C
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-

- +

ŷ̂(4)

ŷ̂(5)

Predictions

Test Error Rate

x(i) ~ p*(·)



Two Types of Error
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2. Train Error (aka. empirical risk)

1. True Error (aka. expected risk)
This quantity 

is always unknown

We can measure this 
on the training data



PAC / SLT Model
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We’ve also referred to 

this as the “Function 

Approximation View”



Three Hypotheses of Interest
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Question: 
True or False: 
h* and c* are 
always equal. 



PAC LEARNING
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Probably Approximately Correct 
(PAC) Learning

Whiteboard:
– PAC Criterion
– Meaning of “Probably Approximately Correct”
– Def: PAC Learner
– Sample Complexity
– Consistent Learner
– Realizable vs. Agnostic Cases
– Finite vs. Infinite Hypothesis Spaces
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SAMPLE COMPLEXITY RESULTS
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…
We’ll start with the 

finite case…



Probably Approximately Correct 
(PAC) Learning

Whiteboard:
– Theorem 1: Realizable Case, Finite |H|
– Proof of Theorem 1
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Example: Conjunctions
Question:
Suppose H = class of 
conjunctions over x in {0,1}M

Example hypotheses:
h(x) = x1 (1-x3) x5

h(x) = x1 (1-x2) x4 (1-x5)

If M = 10, % = 0.1, δ = 0.01, how 
many examples suffice 
according to Theorem 1?
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Answer:
A. 10*(2*ln(10)+ln(100 )) ≈ 92
B. 10*(3*ln(10)+ln(100)) ≈ 116
C. 10*(10*ln(2)+ln(100 )) ≈ 116
D. 10*(10*ln(3)+ln(100)) ≈ 156
E. 100*(2*ln(10)+ln(10 )) ≈ 691
F. 100*(3*ln(10)+ln(10)) ≈ 922
G. 100*(10*ln(2)+ln(10 )) ≈ 924
H. 100*(10*ln(3)+ln(10)) ≈ 1329


