
CNNs
+

PAC Learning

1

10-301/601 Introduction to Machine Learning

Matt Gormley
Lecture 14

Mar. 14, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 27
– Due: Fri, Mar 18 at 11:59pm

2

Peer Tutoring

3

Tutor Tutee

better grades

deeper
understanding

personal
attention

better grades

mastery

Improved course for everyone

Answer:

Dynamic Programming

5

Question:
Have you
studied
dynamic
programming
in a previous
course?

A. Yes

B. No

Answer:

Question:
What is the difference between memoization and dynamic
programming, when applied to a recursive function f(x)?

A. memoization computes a function recursively without storing
intermediate results, whereas dynamic programming stores
intermediate results

B. memoization stores function values as they are encountered
top-down, whereas dynamic programming stores function
values as they are encountered bottom-up

C. memoization stores only the output of a tertiary function g(x),
whereas dynamic programming stores the outputs of f(x)
directly

D. memoization typically increases computational complexity of
an algorithm while decreasing space complexity, whereas
dynamic programming typically decreases computational
complexity and increases space complexity

E. memoization memorizes a function, whereas dynamic
programming has a programmer generate code for the
function on-the-fly (i.e. I answered “Yes” to previous question)

BACKGROUND: COMPUTER VISION

6

Example: Image Classification
• ImageNet LSVRC-2011 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

7

8

9

10

Feature Engineering for CV
Edge detection (Canny)

11
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

12

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

CNNs for Image Recognition

13

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply

fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary

gradients.

14

CONVOLUTION

15

What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product”

(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

• Key point:
– Different convolutions extract different types of low-level

“features” from an image
– All that we need to vary to generate these different features is the

weights of F

Slide adapted from William Cohen

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

17

0 0 0

0 1 1

0 1 0

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

18

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

0 0 0

0 1 1

0 1 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

19

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

20

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

21

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

22

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

23

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

24

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

25

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

26

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

27

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

28

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

29

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

30

0 0 0

0 1 0

0 0 0

Identity
Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

31

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

.1 .1 .1

.1 .2 .1

.1 .1 .1

Blurring
Convolution

Input Image

Convolved Image

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product”

(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

• Key point:
– Different convolutions extract different types of low-level

“features” from an image
– All that we need to vary to generate these different features is the

weights of F

Slide adapted from William Cohen

DOWNSAMPLING

42

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

43

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

44

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

45

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

46

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

47

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

48

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

49

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

50

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

51

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2

• Only 9 patches visited in input, so only 9 pixels in output

52

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0 0

1 1

1 1

Downsampling by Averaging
• Downsampling by averaging is a special case of convolution

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2

53

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4

Max-Pooling
• Max-pooling is another form of downsampling
• Instead of averaging, we take the max value within the same range as

the equivalently-sized convolution
• The example below uses a stride of 2

54

Max-
pooling

Input Image

Max-Pooled
Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1

CONVOLUTIONAL NEURAL NETS

56

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

57

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

58

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide
another form of decision function

• Let’s see what they look like…

Convolutional Layer

59

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea:
Treat convolution matrix as
parameters and learn them!

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

60

Architecture #1: LeNet-5

TRAINING CNNS

61

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

63

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

64

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

• Q: Now that we have the CNN
as a decision function, how do
we compute the gradient?

• A: Backpropagation of course!

SGD for CNNs

65

LAYERS OF A CNN

66

ReLU Layer

68

Softmax Layer

69

Fully-Connected Layer

70

Convolutional Layer

71

Convolutional Layer

72

Max-Pooling Layer

73

Max-Pooling Layer

74

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

75

Architecture #1: LeNet-5

Architecture #2: AlexNet

76

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

CNNs for Image Recognition

77

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

CNN VISUALIZATIONS

78

3D Visualization of CNN
http://scs.ryerson.ca/~aharley/vis/conv/

Convolution of a Color Image

80

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

• Color images consist of 3 floats per pixel for
RGB (red, green blue) color values

• Convolution must also be 3-dimensional

Animation of 3D Convolution

81
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser)

82

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy

CNN Summary
CNNs
– Are used for all aspects of computer vision, and

have won numerous pattern recognition

competitions

– Able learn interpretable features at different levels

of abstraction

– Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:
– Readings on course website

– Andrej Karpathy, CS231n Notes

http://cs231n.github.io/convolutional-networks/

83

http://cs231n.github.io/convolutional-networks/

Deep Learning Objectives
You should be able to…
• Implement the common layers found in Convolutional

Neural Networks (CNNs) such as linear layers,
convolution layers, max-pooling layers, and rectified
linear units (ReLU)

• Explain how the shared parameters of a convolutional
layer could learn to detect spatial patterns in an image

• Describe the backpropagation algorithm for a CNN

• Identify the parameter sharing used in a basic recurrent
neural network, e.g. an Elman network

• Apply a recurrent neural network to model sequence
data

• Differentiate between an RNN and an RNN-LM

84

ML Big Picture

85

Learning Paradigms:
What data is available and
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML
Systems:
How to build systems that are
robust, efficient, adaptive,
effective?
1. Data prep
2. Model selection
3. Training (optimization /

search)
4. Hyperparameter tuning on

validation data
5. (Blind) Assessment on test

data

Big Ideas in ML:
Which are the ideas driving
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n

A
re

as
Ke

y
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,

Se
ar

ch

LEARNING THEORY

86

PAC(-MAN) Learning

87

1. True Error

2. Training Error

Question 1:
What is the probability that
Matt get a Game Over in PAC-
MAN?

A. 90%
B. 50%
C. 10%

Question 2:
What is the expected number
of PAC-MAN levels Matt will
complete before a Game-
Over?

A. 1-10
B. 11-20
C. 21-30

Questions for today (and next lecture)
1. Given a classifier with zero training error,

what can we say about true error (aka.
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what
can we say about true error (aka.
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)

88

c*(x)

PAC/SLT Model for Supervised ML

89

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

Dtrain

Learning Algorithm

h(x)
A

B B
0 1

0 1 0 1
+ C

0 1
- +

C
0 1

-

- +

x(i) ~ p*(·)

PAC/SLT Model for Supervised ML
• Problem Setting

– Set of possible inputs, x ∈" (all possible patients)
– Set of possible outputs, y ∈ # (all possible diagnoses)
– Distribution over instances, p*(·)
– Exists an unknown target function, c* : "→#

(the doctor’s brain)
– Set, ℋ, of candidate hypothesis functions, h : "→#

(all possible decision trees)
• Learner is given N training examples

D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}
where x(i) ~ p*(·) and y(i) = c*(x(i))
(history of patients and their diagnoses)

• Learner produces a hypothesis function, ŷ̂ = h(x), that
best approximates unknown target function y = c*(x) on
the training data

90

PAC/SLT Model for Supervised ML
• Problem Setting

– Set of possible inputs, x ∈" (all possible patients)
– Set of possible outputs, y ∈ # (all possible diagnoses)
– Distribution over instances, p*(·)
– Exists an unknown target function, c* : "→#

(the doctor’s brain)
– Set, ℋ, of candidate hypothesis functions, h : "→#

(all possible decision trees)
• Learner is given N training examples

D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}
where x(i) ~ p*(·) and y(i) = c*(x(i))
(history of patients and their diagnoses)

• Learner produces a hypothesis function, ŷ̂ = h(x), that
best approximates unknown target function y = c*(x) on
the training data

91

Two important settings we’ll
consider:
1. Classification: the possible

outputs are discrete
2. Regression: the possible

outputs are real-valued

c*(x)

PAC/SLT Model for Supervised ML

92

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

Dtrain

Learning Algorithm

x(4)

x(5)

y(4)

y(5)

Dtest

h(x)
A

B B
0 1

0 1 0 1
+ C

0 1
- +

C
0 1

-

- +

ŷ̂(4)

ŷ̂(5)

Predictions

Test Error Rate

x(i) ~ p*(·)

Two Types of Error

93

2. Train Error (aka. empirical risk)

1. True Error (aka. expected risk)
This quantity

is always unknown

We can measure this
on the training data

PAC / SLT Model

94

We’ve also referred to

this as the “Function

Approximation View”

Three Hypotheses of Interest

95

Question:
True or False:
h* and c* are
always equal.

PAC LEARNING

96

Probably Approximately Correct
(PAC) Learning

Whiteboard:
– PAC Criterion
– Meaning of “Probably Approximately Correct”
– Def: PAC Learner
– Sample Complexity
– Consistent Learner
– Realizable vs. Agnostic Cases
– Finite vs. Infinite Hypothesis Spaces

97

SAMPLE COMPLEXITY RESULTS

99

Sample Complexity Results

100

Realizable Agnostic

Four Cases we care about…
We’ll start with the

finite case…

Probably Approximately Correct
(PAC) Learning

Whiteboard:
– Theorem 1: Realizable Case, Finite |H|
– Proof of Theorem 1

101

Sample Complexity Results

102

Realizable Agnostic

Four Cases we care about…

Example: Conjunctions
Question:
Suppose H = class of
conjunctions over x in {0,1}M

Example hypotheses:
h(x) = x1 (1-x3) x5

h(x) = x1 (1-x2) x4 (1-x5)

If M = 10, % = 0.1, δ = 0.01, how
many examples suffice
according to Theorem 1?

103

Answer:
A. 10*(2*ln(10)+ln(100)) ≈ 92
B. 10*(3*ln(10)+ln(100)) ≈ 116
C. 10*(10*ln(2)+ln(100)) ≈ 116
D. 10*(10*ln(3)+ln(100)) ≈ 156
E. 100*(2*ln(10)+ln(10)) ≈ 691
F. 100*(3*ln(10)+ln(10)) ≈ 922
G. 100*(10*ln(2)+ln(10)) ≈ 924
H. 100*(10*ln(3)+ln(10)) ≈ 1329

