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Q&A

Q: Why did the experiments in HW4 take so long?

o Sorry! When | heard, 5k epochs only takes 40 minutes that sounded
® short to me. But I’'ve been in the ML biz for too long...

Q: What is “bias’”?

A That depends. The word “bias” shows up all over machine learning!
e Watch out...

1.
2.

3.

The additive term in a linear model (i.e. b in w'x + b)

Inductive bias is the principle by which a learning algorithm
generalizes to unseen examples

Bias of a model in a societal sense may refer to racial, socio-
economic, gender biases that exist in the predictions of your
model

The difference between the expected predictions of your model
and the ground truth (as in “bias-variance tradeoff”)



Reminders

* Homework 5: Neural Networks
— Out: Sun, Feb 27
— Due: Fri, Mar 18 at 11:59pm

* Peer Tutoring




SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Flnl beled examples are sufficient so that with

te |H| probability (1 —4) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




Background: Contrapositive

* Definition: The contrapositive of the statement
A=0DB
is the statement
B = -A
and the two are logically equivalent (i.e. they share
all the same truth values in a truth table!)

* Proof by contrapositive:
If you want to prove A = B, instead prove -B = -A
and then conclude that A= B

* Caution: sometimes negating a statement is easier
said than done, just be careful!

10



Probably Approximately Correct

(PAC) Learning
Whiteboard:
— Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Flnl beled examples are sufficient so that with

te |H| probability (1 —4) all h € H with R(h) =0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Infinite |H|




Finite |H |

Infinite ||

2. Bound is only logarithmic in
|H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

1.  Bound is inversely linear in 1.
epsilon (e.g. halving the error P
requires double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > 1log(|H]) + log(3)] le-
beled examples are sufficient so that with
probability (1— ) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H]) + log(2)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that [R(h) — R(h)| < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > I[log(|H|) +1log(3)] la-| Thm. 2 N > 55 [log(|H]) + log(2)]
L] L] o [ | I LM | 1 1 1 i 1 .
F|n|te ‘H | beled examples are sufficient s e need o new defmtion of Fﬁaent so that

probability (1—0) all h € H with «complexity” for a Hypothesis space forall b € H we
have R(h) < e. for these results (see VC Dimension) [< e.

Infinite |H| [f [f




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — d) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




VC-DIMENSION



Finite vs. Infinite |H]

Finite |H|

Example: H = the set of all
decision trees of depth D over
binary feature vectors of length

-+ +

Example: H = the set of all
conjunctions over binary feature
vectors of length M

Infinite |H|
* Example: H = the set of all linear

decision boundaries in M

dimensions
A

o0
® =+

+ +

>

* Example: H = the set of all neural
networks with 1-hidden layer
with length M inputs



IMPORTANT NOTE

In our discussion of PAC
Learning, we are only
concerned with the

problem of binary
classification




Labelings & Shattering

Def: A hypothesis h applied to some dataset S
generates a labeling of S.

Def: Let H [S] be the set of all (distinct)
labelings of S generated by hypotheses h € H..

H shatters S if |H[S]| = 2!

Equivalently, the hypotheses in H can
generate every possible labeling of S.



Labelings & Shattering

Whiteboard:
— Shattering example: binary classification



VC-dimension

Def: The VC-dimension (or Vaporik-Chervonenkis

dimension) of H is the cardinality of the largest
set S such that A can shatter S.

Special Case: If H can shatter arbitrarily large finite
sets, then the VC-dimension of H is infinity

Notation: We write VC(H') = d to say the V(-
Dimension of a hypothesis space H is d



VC-dimension Proof

Proof Technique: To prove that VC(H) = d
there are two steps:

1. show that there exists a set of d points that
can be shattered by H
= VC(H) = d

2. show that there does NOT existasetofd + 1
points that can be shattered by H
=2 VC(H)<d+1

26



VC-dimension

Whiteboard:

— VC-dimension Example: linear separators

— Proof sketch of VC-dimension for linear
separators in 2D



4 vs.V

VC-dimension

— Proving VC-dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be
shattered requires us to show that for all ()
labelings of the dataset, our hypothesis class
contains a hypothesis that can correctly classify it

31



VC-dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

Question:

What is the VC-dimension of H = 1D positive rays. That is for a threshold w;,
everything to the right of w is labeled as +1, everything else is [abeled -1.

- +

Answer:



VC-dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist (A) a dataset of size d+1 that
can be shattered

Question:

What is the VC-dimension of H = 1D positive intervals. That is for an interval
(w,, w,), everything inside the interval is labeled as +1, everything else is
labeled -1.

Answer:



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — d) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




SLT-STYLE COROLLARIES



SLT-style Corollaries

Thm. 1 N > 2 |log(|H]|) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € H with R(h) =0
have R(h) <€

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |#{|). For some § > 0, with probabil-
ity at least (1 — ¢), for any h in H consistent with the training data

(i.e. R(h) = 0),

We can obtain

1 similar corollaries for
edach of the

) ) ] theorems...

R(h) < % [ln(|7-[|) +1n (




SLT-style Corollaries

Corollary 1 (Realizable, Finite |[#|). For some d > 0, with probabil-
ity at least (1 — ), for any h in H consistent with the training data

(i.e. R(h) = 0),

R(h) < % [ln(|7-[|) +1n (;)]

Corollary 2 (Agnostic, Finite |#|). Forsome > 0, with probability
at least (1 — 0), for all hypotheses h in H,

1

R(h) < R(h) + \/2]\7 [ln(|7'l|) + In (?)]



SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% [VC(?—L) In (VC](VH)> +1n G)D (1)

Corollary 4 (Agnostic, Infinite |7{|). Forsome J > 0, with probabil-
ity at least (1 — 6), for all hypotheses A in H,

wr <o vo (i[5 e on (D)) @




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% {VC(H) In (VC](VH)) +1n (%)D (1)

Corollary 4 (Agnostic, Infinite [#{|). Forsome d > 0, with probabil-
ity at least (1 — 6), for all hypotheses h in H,

wr <o vo (i[5 e on(D)]) @

l@ Should these corollaries inform
how we do model selection?




Learning Theory & Model Selection

error A
(i.e. lower =»
good data fit)

Key Point:
we want
to tradeoff
between
low
training
error and
keeping H

simple >
(Iovy VC- VC(H)
Dim) (i.e. complexity)

Q:ls
Corollary
4 useful?

A: Yes!




1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

49



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



PROBABILITY



Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(x) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) := P(X = x)

53



Random Variables: Definitions

Continuous
Random
Variable

X

Random variable whose values come
from an interval or collection of
intervals (e.g. the real numbers or the

range (3, 5))

Probability
density
function

(pdf)

f(z)

Function the returns a nonnegative
real indicating the relative likelihood
that a continuous r.v. X takes value x

* Forany continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

P(angb):/bf(x)d:C




Random Variables: Definitions

Cumulative Function that returns the probability
distribution F(x) that a random variable X is less than or
function equal to x:

F(z) = P(X < z)

e Fordiscrete random variables:

Flz)=P(X<z)= )Y PX=a)=) p

/' <x /' <x

* For continuous random variables:

Flz)=P(X <z)= /x f(z")dz'




Notational Shortcuts

A convenient shorthand:
P(A, B)
P(B)
= For all values of a and b:

P(A|B) =

P(A=a|B=0b) =



Notational Shortcuts
But then how do we tell P(E) apart from P(X)?
cent | [T |
Instead of writing: P(AIB) — P(A, B)
(A1B) = ~po
We should write: P4 5(A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

* For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson

 For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:
1

0 0.2 0.4 1

f(¢la, B) = (1 — )P
’ B(a, 8)
4 I T I T I ! I T
; — a=0.1,6=0.9
= 1 — a=0508=05
g 2 1 — a=10,8=1.0
~ | — a=508=5.0
1 — a=10.0,3=5.0
e
0 ] /1 L 1 L 1 SN~ N
0.6 0.8
¢



Common Probability Distributions

Dirichlet Distribution

probability density function:
1

0 0.2 0.4 1

F(@la, B) = (1 — )P
’ B(a, )
4 I T I T I ! I T
3 — a=0.1,6=0.9
= 1 — a=0508=05
g 2 1 — a=10,8=1.0
~ | — a=508=5.0
| — a=10.0,8=5.0
e
0 ] /1 L 1 L 1 SN~ N
0.6 0.8
¢



Common Probability Distributions

Dirichlet Distribution

probability density function:

K
p(dla) = —— J[ e+ where B(a) =
k=1

B(a)




EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of Xis E/X]. Also called the mean.

 Discrete random variables:

Suppose X can take any value in the set X'.

E[X]= ) ap(z)

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X])?]

* Discrete random variables: \

Var(X) = > (z — p)*p(x)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e \We call this a joint ensemble and write
p(x,y) = prob(X =x and Y = y)

Z

AN

p(x.y.z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) = plz,y)
Yy

e This is like adding slices of the table together.

y p(x.y)
e

e Another equivalent definition: p(x) = > _, p(x|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = p(z,y)/p(y)

Z
P

BN

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|z)p(ylz)  Vz

Slide from Sam Roweis (MLSS, 2005)



MAXIMUM LIKELIHOOD
ESTIMATION (MLE)



Likelihood Function | ©neR.V.

Given N independent, identically distributed (iid) samples
D = {x(, x@), ..., x(} from a random variable X ...

The likelihood function is
— Case 1: X is discrete with probability mass function (pmf) p(x|0)
L(8) = p(x("|6) p(x)]B) ... p(x(V]6)
— Case 2: X is continuous with probability density function (pdf) f(x|0)
L(B) = f(x]B) f(x2]6) ... f(xN[8) | The likelihood tells us
how likely one sample is
The log-likelihood function is relative to another
— Case 1: X is discrete with probability mass function (pmf) p(x|0)
40) = log p(x|8) + ... +log p(x(V)|)
— Case 2: X is continuous with probability density function (pdf) f(x|0)
40) = log f(x[0) +... +log f(xN)]B)



Likelihood Function | TWoOR.V.s

Given N iid samples D = {(x(, yO), ..., (x™), y(N)} from a pair
of random variables X, Y

The conditional likelihood function:

— Case 1: Y is discrete with pmf p(y | x, 6)
L(8) = p(y" | x, ) ... p(y™ | x), ©)

— Case 2: Y is continuous with pdf f(y | x, ©)
L(6) = f(yW [ x1, ) ... f(yV | xV), ©)

The joint likelihood function:

— Case 1: Xand Y are discrete with pmf p(x,y|0)
L(©) = p(x1, y)[) ... p(xN), yV]©)

— Case 2: X and Y are continuous with pdf f(x,y|0)
L(8) = f(x(, yI|B) ... f(x(N), y(N)|O)



Likelihood Function | TWoOR.V.s

* Given Niid samples D = {(x(, y®), ..., (x(N), y(N\))} from a pair
of random variables X, Y

* The joint likelihood function:

Mixed
discrete/
continuous!

— Case 3: Y is discrete with pmf p(y|B) and
X is continuous with pdf f(x|y,a)
L(a, B) = (x| y, @) p(y[B) ... F(xM]y™), a) p(y™)]|B)
— Case 4:Y is continuous with pdf f(y|B) and
X is discrete with pmf p(x|y,a)

L(a, B) = p(x] y, a) f(y™|B) ... p(xM] y™), a) f(y™)|B)



MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~p(x|6)
Write the log-likelihood
(0) = log p(x([0) + ... +log p(x(N)])

Compute partial derivatives, i.e., the gradient
040)/08, = ...

040)/08), = ...

Set derivatives equal to zero and solve for 6
040)/00,,=0oforallme{y,..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @M



MLE of Exponential Distribution

Whiteboard
— Example: MLE of Exponential Distribution



MLE

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from |5 Compute derivative
Bernoulli(¢) is: w.r.t. ¢
3. Set derivative to

Number of z; = 1 zero and solve for ¢

PMLE =

N



Question:

Assume we have N iid
samples x(, x(), ..., x(N)
drawn from a Bernoulli(¢).

What is the log-likelihood of
the data q¢)?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

MLE

Answer:

~—TIommo N W

l(¢) =N, log(¢) + N, (1 - log(¢))
I(¢) = N,log(®) + N, log(1-9)
I(¢) = log($)"" + (1 - log(p))N°
(@) = log ()" + log(1-¢)™°

(@) = Nolog(®) + N, (1-log(¢))
I(¢) =N, log(¢) + N, log(1-9)
I(¢) = log($)"° + (1- log(¢))"
I(¢) = log(¢)™° + log(1-¢)""

I(¢) = the most likely answer



MLE

Question:

Assume we have N iid
samples x(, x(), ..., x(N)
drawn from a Bernoulli(¢).

What is the derivative of the
log-likelihood 3¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

A.
B.
.
D. 0¢8)/30 = log(¢) /N, -

F.

0¢(8)/08 = ¢V - (1- p)N°
068)/00=¢/N, - (1-¢)/N,
0¢(8)/00 =N,/ $-N,/ (1- ¢)

lOg(1 ) ¢) / No
0¢6)/90 = N,/ log(¢9) -

No / lOg(T ) ¢)
04 0)/00 = the derivative of
the most likely answer



Learning from Data (Frequentist)

Whiteboard
— Example: MLE of Bernoulli



MAP ESTIMATION



MLE vs. MAP

Suppose we have data D = {z(V1V




MLE vs. MAP

Suppose we have data D = {z(W} ¥

Principle of Max:I Important!

Choose the para hood

Usually the parameters are
of the S{f};‘a- continuous, so the prioris a
0 — arsg probability density function F)

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) Ey' /mation:
Choose the parameters that maximize the\ _Ssterior
of the parameters given the data.  Prior

N
OMLE = argmaxg p(0|D) = argmaxy f(0) Hp(x(i)‘e)
i=1

Maximum a posteriori (MAP) estimate



Learning from Data (Bayesian)

Whiteboard
— maximum a posteriori (MAP) estimation



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~p(x|6)
Write the log-likelihood
(0) = log p(x([0) + ... +log p(x(N)])

Compute partial derivatives, i.e., the gradient
040)/08, = ...

040)/08), = ...

Set derivatives equal to zero and solve for 6
040)/00,,=0oforallme{y,..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @M



Recipe for Closed-form MAP

Assume data was generated iid from some model, i.e., write
the generative story

0 ~ p(0) and then for all i: x) ~ p(x|0)
Write the log posterior

twar(8) = log p(6) + log p(xV|8) + ... +log p(x"]6)

Compute partial derivatives, i.e., the gradient
GZMAP(G)/aQ — oo

0ap(0)/00y = ...
Set derivatives to equal zero and solve for ©

06uap(0)/00,, =0 forallm e {1, ..., M}

OMAP = solution to system of M equations and M variables
Compute the second derivative and check that {0) is
concave down at VAP



Learning from Data (Bayesian)

Whiteboard
— Example: MAP of Beta-Bernoulli Model



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE | MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



