

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

PAC Learning + MLE/MAP

Matt Gormley Lecture 15 Mar. 16, 2022

Q&A

Q: Why did the experiments in HW4 take so long?

A: Sorry! When I heard, 5k epochs only takes 40 minutes that sounded short to me. But I've been in the ML biz for too long…

Q: What is "bias"?

That depends. The word "bias" shows up all over machine learning! Watch out…

- 1. The additive term in a linear model (i.e. b in $w^{T}x + b$)
- 2. Inductive bias is the principle by which a learning algorithm generalizes to unseen examples
- 3. Bias of a model in a societal sense may refer to racial, socio- economic, gender biases that exist in the predictions of your model
- 4. The difference between the expected predictions of your model and the ground truth (as in "bias-variance tradeoff")

Reminders

- **Homework 5: Neural Networks**
	- **Out: Sun, Feb 27**
	- **Due: Fri, Mar 18 at 11:59pm**
- **Peer Tutoring**

SAMPLE COMPLEXITY RESULTS

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Background: Contrapositive

• *Definition:* The **contrapositive** of the statement $A \Rightarrow B$

is the statement

$$
\neg B \Rightarrow \neg A
$$

and the two are logically equivalent (i.e. they share all the same truth values in a truth table!)

- *Proof by contrapositive:* If you want to prove $A \Rightarrow B$, instead prove $\neg B \Rightarrow \neg A$ and then conclude that $A \Rightarrow B$
- *Caution:* sometimes negating a statement is easier said than done, just be careful!

Probably Approximately Correct (PAC) Learning

Whiteboard:

– Proof of Theorem 1

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

VC-DIMENSION

Finite vs. Infinite |H|

Finite |H|

• *Example*: H = the set of all decision trees of depth D over binary feature vectors of length M

• *Example*: H = the set of all conjunctions over binary feature vectors of length M

Infinite |H|

• *Example*: H = the set of all linear decision boundaries in M dimensions

• *Example*: H = the set of all neural networks with 1-hidden layer with length M inputs

IMPORTANT NOTE

In our discussion of PAC Learning, we are only concerned with the problem of **binary** classification

Labelings & Shattering

Def: A hypothesis h applied to some dataset S generates a **labeling** of S.

Def: Let $\mathcal{H}[S]$ be the set of all (distinct) labelings of S generated by hypotheses $h \in \mathcal{H}$. H shatters S if $|\mathcal{H}[S]| = 2^{|S|}$

Equivalently, the hypotheses in H can generate every possible labeling of S .

Labelings & Shattering

Whiteboard:

– Shattering example: binary classification

VC-dimension

Def: The **VC-dimension** (or Vaporik-Chervonenkis dimension) of H is the cardinality of the largest set S such that H can shatter S .

Special Case: If ℋ can shatter arbitrarily large finite sets, then the VC-dimension of H is infinity

Notation: We write $VC(\mathcal{H}) = d$ to say the VC-Dimension of a hypothesis space H is d

VC-dimension Proof

Proof Technique: To prove that $VC(H) = d$ there are two steps:

- 1. show that there exists a set of d points that can be shattered by H \rightarrow VC(H) $\geq d$
- 2. show that there does NOT exist a set of $d + 1$ points that can be shattered by H \rightarrow VC(H) < $d + 1$

VC-dimension

Whiteboard:

- VC-dimension Example: linear separators
- Proof sketch of VC-dimension for linear separators in 2D

∃ vs. ∀

VC-dimension

– Proving **VC-dimension** requires us to show that **there exists** (∃) a dataset of size d that can be shattered and that **there does not exist** (∄) a dataset of size d+1 that can be shattered

Shattering

– Proving that a particular dataset can be **shattered** requires us to show that **for all** (∀) labelings of the dataset, our hypothesis class contains a hypothesis that can correctly classify it

VC-dimension Examples

• *Definition*: If VC(H) = d, then **there exists** (∃) a dataset of size d that can be shattered and that **there does not exist** (∄) a dataset of size d+1 that can be shattered

Question:

What is the VC-dimension of H = **1D positive rays**. That is for a threshold w, everything to the right of w is labeled as +1, everything else is labeled -1.

Answer:

VC-dimension Examples

• *Definition*: If VC(H) = d, then **there exists** (∃) a dataset of size d that can be shattered and that **there does not exist** (∄) a dataset of size d+1 that can be shattered

Question:

What is the VC-dimension of H = **1D positive intervals**. That is for an interval (w_1, w_2) , everything inside the interval is labeled as +1, everything else is labeled -1.

Answer:

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

SLT-STYLE COROLLARIES

Thm. 1 $N \geq \frac{1}{\epsilon} \left| \log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right|$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$.

> *Solve the inequality in Thm.1 for epsilon to obtain Corollary 1*

Corollary 1 (Realizable, Finite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for any h in H consistent with the training data (i.e. $\hat{R}(h) = 0$),

$$
R(h) \leq \frac{1}{N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right]
$$

We can obtain similar corollaries for each of the theorems…

Corollary 1 (Realizable, Finite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for any h in H consistent with the training data (i.e. $\hat{R}(h) = 0$),

$$
R(h) \leq \frac{1}{N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right]
$$

Corollary 2 (Agnostic, Finite $|\mathcal{H}|$). For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in H,

$$
R(h) \leq \hat{R}(h) + \sqrt{\frac{1}{2N} \left[\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right]}
$$

Corollary 3 (Realizable, Infinite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for any hypothesis h in H consistent with the data (i.e. with $R(h) = 0$),

$$
R(h) \le O\left(\frac{1}{N} \left[\mathsf{VC}(\mathcal{H}) \ln \left(\frac{N}{\mathsf{VC}(\mathcal{H})} \right) + \ln \left(\frac{1}{\delta} \right) \right] \right) \tag{1}
$$

Corollary 4 (Agnostic, Infinite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in H,

$$
R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{N} \left[\mathsf{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right]}\right) \tag{2}
$$

Corollary 3 (Realizable, Infinite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for any hypothesis h in H consistent with the data (i.e. with $R(h) = 0$),

$$
R(h) \le O\left(\frac{1}{N}\left[\mathsf{VC}(\mathcal{H})\ln\left(\frac{N}{\mathsf{VC}(\mathcal{H})}\right) + \ln\left(\frac{1}{\delta}\right)\right]\right) \tag{1}
$$

Corollary 4 (Agnostic, Infinite $|\mathcal{H}|$ **).** For some $\delta > 0$, with probability at least $(1 - \delta)$, for all hypotheses h in H,

$$
R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{N} \left[\mathsf{VC}(\mathcal{H}) + \ln\left(\frac{1}{\delta}\right)\right]}\right) \tag{2}
$$

Should these corollaries inform how we do model selection?

Questions For Today

- 1. Given a classifier with zero training error, what can we say about generalization error? (Sample Complexity, Realizable Case)
- 2. Given a classifier with low training error, what can we say about generalization error? (Sample Complexity, Agnostic Case)
- 3. Is there a theoretical justification for regularization to avoid overfitting? (Structural Risk Minimization)

Learning Theory Objectives

You should be able to…

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world learning examples
- Distinguish between a large sample and a finite sample analysis
- Theoretically motivate regularization

PROBABILITY

Random Variables: Definitions

Random Variables: Definitions

• For any continuous random variable: $P(X = x) = 0$

• Non-zero probabilities are only available to intervals:

$$
P(a \le X \le b) = \int_{a}^{b} f(x)dx
$$

Random Variables: Definitions

Cumulative distribution function

Function that returns the probability that a random variable X is less than or equal to x:

$$
F(x) = P(X \le x)
$$

• For **discrete** random variables:

$$
F(x) = P(X \le x) = \sum_{x' < x} P(X = x') = \sum_{x' < x} p(x')
$$

• For **continuous** random variables:

$$
F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx'
$$

Notational Shortcuts

A convenient shorthand:

$$
P(A|B) = \frac{P(A,B)}{P(B)}
$$

\n
$$
\Rightarrow \text{For all values of } a \text{ and } b:
$$

\n
$$
P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}
$$

Notational Shortcuts

But then how do we tell *P(E)* apart from *P(X)* ?

 $P(A|B) = \frac{P(A,B)}{P(B)}$ *P*(*B*) Instead of writing:

We should write: $P_{A|B}(A|B) = \frac{P_{A,B}(A,B)}{P_{B}(B)}$ $P_B(B)$

…but only probability theory textbooks go to such lengths.

COMMON PROBABILITY DISTRIBUTIONS

Common Probability Distributions

- For Discrete Random Variables:
	- Bernoulli
	- Binomial
	- Multinomial
	- Categorical
	- Poisson
- For Continuous Random Variables:
	- Exponential
	- Gamma
	- Beta
	- Dirichlet
	- Laplace
	- Gaussian (1D)
	- Multivariate Gaussian

Common Probability Distributions

Beta Distribution

probability density function:

$$
f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}
$$

Common Probability Distributions

Dirichlet Distribution

probability density function:

$$
f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}
$$

Common Probability Distributions *^f*(⇤*|,* ⇥) = ¹

Dirichlet Distribution *B*(*,* ⇥)

probability density function:

EXPECTATION AND VARIANCE

Expectation and Variance

The **expected value** of *X* is *E[X]*. Also called the mean.

- Discrete random variables: $E[X] = \sum x p(x)$ $x \in \mathcal{X}$ Suppose X can take any value in the set \mathcal{X} .
- Continuous random variables: $E[X] = \int^{+\infty}$ $-\infty$ *xf*(*x*)*dx*

Expectation and Variance

The **variance** of *X* is *Var(X)*.

$$
Var(X) = E[(X - E[X])^2]
$$

• Discrete random variables:

$$
Var(X) = \sum_{x \in \mathcal{X}} (x - \mu)^2 p(x)
$$

• Continuous random variables:

$$
Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx
$$

 μ = $E[Y]$

MULTIPLE RANDOM VARIABLES

Joint probability

Marginal probability

Conditional probability

Joint Probability Joint Probability

- Key concept: two or more random variables may interact. Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write $p(x, y) = \text{prob}(X = x \text{ and } Y = y)$

Marginal Probabilities Marchiese Scholarship

• We can "sum out" part of a joint distribution to get the *marginal* distribution of a subset of variables:

$$
p(x) = \sum_{y} p(x, y)
$$

• This is like adding slices of the table together.

 \bullet Another equivalent definition: $p(x) = \sum_{y} p(x|y)p(y)$.

Conditional Probability Participal Probability

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

Independence and Conditional Independence Independence word in dependence

• Two variables are independent iff their joint factors:

• Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$
p(x, y|z) = p(x|z)p(y|z) \qquad \forall z
$$

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Likelihood Function

One R.V.

- Given N **independent, identically distributed (iid)** samples $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ from a **random variable** $X ...$
- The **likelihood** function is

• The **log-likelihood** function is

- Case 1: X is **discrete** with probability mass function (*pmf)* p(x|θ) L(θ) = p(x⁽¹⁾|θ) p(x⁽²⁾|θ) ... p(x^(N)|θ)
- Case 2: X is **continuous** with probability density function (pdf**)** f(x|θ) L(θ) = f(x⁽¹⁾| θ) f(x⁽²⁾| θ) ... f(x^(N)| θ) The **likelihood** tells us
	- how likely one sample is relative to another
- Case 1: X is **discrete** with probability mass function (*pmf)* p(x|θ) $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
- Case 2: X is **continuous** with probability density function (pdf**)** f(x|θ) $\ell(\theta) = \log f(x^{(1)}|\theta) + ... + \log f(x^{(N)}|\theta)$

Likelihood Function

Two R.V.s

- Given N **iid** samples $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ from a pair of **random variables** X, Y
- The **conditional likelihood** function:
	- Case 1: Y is **discrete** with *pmf* p(y | x, θ) L(θ) = p(y⁽¹⁾| x⁽¹⁾, θ) ... p(y^(N)| x^(N), θ)
	- Case 2: Y is **continuous** with *pdf* f(y | x, θ) L(θ) = f(y⁽¹⁾| x⁽¹⁾, θ) ... f(y^(N)| x^(N), θ)
- The **joint likelihood** function:
	- Case 1: X and Y are **discrete** with *pmf* p(x,y|θ) L(θ) = p(x⁽¹⁾, y⁽¹⁾| θ) ... p(x^(N), y^(N)| θ)
	- Case 2: X and Y are **continuous** with *pdf* f(x,y|θ) L(θ) = f(x⁽¹⁾, y⁽¹⁾| θ) ... f(x^(N), y^(N)| θ)

Likelihood Function Two R.V.s

- Given N **iid** samples $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ from a pair of **random variables** X, Y
- The **joint likelihood** function:
	- Case 1: X and Y are **discrete** with *pmf* p(x,y|θ) $L(\theta) = p(x^{(1)}, y^{(1)}|\theta) ... p(x^{(N)}, y^{(N)}|\theta)$
	- Case 2: X and Y are **continuous** with *pdf* f(x,y|θ) L(θ) = f(x⁽¹⁾, y⁽¹⁾| θ) ... f(x^(N), y^(N)| θ)
	- Case 3: Y is **discrete** with *pmf* p(y|β) and X is **continuous** with *pdf* f(x|y,α) L(α, β) = f(x⁽¹⁾| y⁽¹⁾, α) p(y⁽¹⁾|β) ... f(x^(N)| y^(N), α) p(y^(N)|β) – Case 4: Y is **continuous** with *pdf* f(y|β) and X is **discrete** with *pmf* p(x|y,α) continuous!
		- L(α, β) = p(x⁽¹⁾| y⁽¹⁾, α) f(y⁽¹⁾|β) ... p(x^(N)| y^(N), α) f(y^(N)|β)

Mixed

discrete/

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

ie parameters t $\frac{1}{N}$ **Principle of Maximum Likelihood Estimation:** *i*=1 Choose the parameters that maximize the likelihood of the data. $\boldsymbol{\theta}^{\sf MLE} = \operatorname{argmax}$ $\prod p(\mathbf{x}^{(i)}|\boldsymbol{\theta})$ *N*

 $\overline{\mathbf{M}}$ = $\overline{\mathbf{M}}$ <u>"</u> $\overline{}$ *i*=1 $\frac{\bm v}{i\!=\!1}$ Maximum Likelihood Estimate (MLE)

 $\boldsymbol{\theta}$

 $\overline{i=1}$

N

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate **as much** probability mass **as possible** to the things we have observed…

…**at the expense** of the things we have **not** observed

Recipe for Closed-form MLE

- 1. Assume data was generated iid from some model, i.e., write the *generative story*
	- $x^{(i)} \sim p(x|\theta)$
- 2. Write the log-likelihood $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
- 3. Compute partial derivatives, i.e., the gradient $\partial \ell(\theta)/\partial \theta_1 = ...$

… $\partial \ell(\theta)/\partial \theta_{\rm M} = ...$

- 4. Set derivatives equal to zero and solve for **θ** $\partial \ell(\theta)/\partial \theta_m$ = 0 for all m $\in \{1, ..., M\}$ **θ**MLE **=** solution to system of M equations and M variables
- 5. Compute the second derivative and check that *l*(**θ**) is concave down at **θ**MLE

MLE of Exponential Distribution

Whiteboard

– Example: MLE of Exponential Distribution

In-Class Exercise

Show that the MLE of parameter *ɸ* for N samples drawn from Bernoulli(*ɸ*) is:

$$
\phi_{MLE} = \frac{\text{Number of } x_i = 1}{N}
$$

Steps to answer:

- 1. Write log-likelihood of sample
- 2. Compute derivative w.r.t. *ɸ*
- 3. Set derivative to zero and solve for *ɸ*

Question:

Assume we have N iid samples $x^{(1)}, x^{(2)}, ..., x^{(N)}$ drawn from a Bernoulli(*ɸ*).

What is the **log-likelihood** of the data $\ell(\phi)$?

Assume $N_1 = #$ of $(x^{(i)} = 1)$ *N*₀ = # of $(x^{(i)} = 0)$

Answer:

A.
$$
I(\phi) = N_1 \log(\phi) + N_0 (1 - \log(\phi))
$$

B.
$$
I(\phi) = N_1 \log(\phi) + N_0 \log(1-\phi)
$$

C.
$$
I(\phi) = \log(\phi)^{N_1} + (1 - \log(\phi))^{N_0}
$$

D.
$$
I(\phi) = \log(\phi)^{N_1} + \log(1-\phi)^{N_0}
$$

E.
$$
I(\phi) = N_o \log(\phi) + N_1 (1 - \log(\phi))
$$

$$
F. \quad I(\phi) = N_0 \log(\phi) + N_1 \log(1-\phi)
$$

G.
$$
I(\phi) = \log(\phi)^{N0} + (1 - \log(\phi))^{N1}
$$

H.
$$
I(\phi) = \log(\phi)^{N0} + \log(1-\phi)^{N1}
$$

I.
$$
I(\phi)
$$
 = the most likely answer

Question:

Assume we have N iid samples $x^{(1)}$, $x^{(2)}$, ..., $x^{(N)}$ drawn from a Bernoulli(*ɸ*).

What is the **derivative** of the log-likelihood $\partial\ell(\theta)/\partial\theta$?

Assume $N_1 = #$ of $(x^{(i)} = 1)$ $N_0 = # of (x^{(i)} = 0)$

Answer:

A.
$$
\partial \ell(\theta)/\partial \theta = \phi^{N_1} - (1 - \phi)^{N_0}
$$

B.
$$
\partial \ell(\theta)/\partial \theta = \phi/N_1 - (1 - \phi)/N_0
$$

C.
$$
\partial \ell(\Theta)/\partial \Theta = N_1 / \phi - N_0 / (1 - \phi)
$$

D.
$$
\partial \ell(\theta)/\partial \theta = \log(\phi) / N_1 - \log(1 - \phi) / N_0
$$

E.
$$
\partial \ell(\theta)/\partial \theta = N_1 / \log(\phi)
$$
 -
 $N_0 / \log(1 - \phi)$

F.
$$
\partial \ell(\theta)/\partial \theta
$$
 = the derivative of
the most likely answer

Learning from Data (Frequentist)

Whiteboard

– Example: MLE of Bernoulli

MAP ESTIMATION

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

ie parameters t 12 <mark>maximiz</mark> **Principle of Maximum Likelihood Estimation:** Choose the parameters that maximize the likelihood of the data. \overline{N}

$$
\boldsymbol{\theta}^{\text{MLE}} = \arg\!\max_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta}) = \arg\!\max_{\boldsymbol{\theta}} \prod_{i=1} p(\mathbf{x}^{(i)}|\boldsymbol{\theta})
$$

 $\overline{\mathbf{M}}$ = $\overline{\mathbf{M}}$ ╩ *p*(**t**(*i*) *|*)*p*() Maximum Likelihood Estimate (MLE)

 $\overline{i} = \overline{1}$

 $\overline{i}=\overline{1}$

 \overline{N}

i=1 **Principle of Maximum** *a posteriori* **(MAP) Estimation:** Choose the parameters that maximize the posterior of the parameters given the data.

 $\boldsymbol{\theta}^{\text{MLE}} = \arg\!\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathcal{D}) = \arg\!\max_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) \big| \ \ \big| \ p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$

Maximum *a posteriori* (MAP) estimate

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

Learning from Data (Bayesian)

Whiteboard

– *maximum a posteriori* (MAP) estimation

Recipe for Closed-form MLE

- 1. Assume data was generated iid from some model, i.e., write the *generative story*
	- $x^{(i)} \sim p(x|\theta)$
- 2. Write the log-likelihood $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
- 3. Compute partial derivatives, i.e., the gradient $\partial \ell(\theta)/\partial \theta_1 = ...$

… $\partial \ell(\theta)/\partial \theta_M = ...$

- 4. Set derivatives equal to zero and solve for **θ** $\partial \ell(\theta)/\partial \theta_m$ = 0 for all m $\in \{1, ..., M\}$ **θ**MLE **=** solution to system of M equations and M variables
- 5. Compute the second derivative and check that *l*(**θ**) is concave down at **θ**MLE

Recipe for Closed-form MAP

1. Assume data was generated iid from some model, i.e., write the *generative story*

 $\theta \sim p(\theta)$ and then for all i: $x^{(i)} \sim p(x|\theta)$

- 2. Write the log posterior $\ell_{\text{MAP}}(\theta) = \log p(\theta) + \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
- 3. Compute partial derivatives, i.e., the gradient $\partial \ell_{\text{MAP}}(\mathbf{\Theta})/\partial \theta_1 = ...$

… $\partial \ell_{\text{MAP}}(\boldsymbol{\theta})/\partial \theta_{\text{M}} = ...$

- 4. Set derivatives to equal zero and solve for **θ** $\partial \ell_{MAP}(\theta)/\partial \theta_m$ = 0 for all m $\in \{1, ..., M\}$ **θ**MAP **=** solution to system of M equations and M variables
- 5. Compute the second derivative and check that *l*(**θ**) is concave down at **θ**MAP

Learning from Data (Bayesian)

Whiteboard

– Example: MAP of Beta-Bernoulli Model

Takeaways

- One view of what ML is trying to accomplish is **function approximation**
- The principle of **maximum likelihood estimation** provides an alternate view of learning
- **Synthetic data** can help **debug** ML algorithms
- Probability distributions can be used to **model** real data that occurs in the world (don't worry we'll make our distributions more interesting soon!)

Learning Objectives

MLE / MAP

You should be able to…

- 1. Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random variables, expectation and variance, joint probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence
- 2. Describe common probability distributions such as the Beta, Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.
- 3. State the principle of maximum likelihood estimation and explain what it tries to accomplish
- 4. State the principle of maximum a posteriori estimation and explain why we use it
- 5. Derive the MLE or MAP parameters of a simple model in closed form