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Q&A

2

Q: Why did the experiments in HW4 take so long? 

A: Sorry! When I heard, 5k epochs only takes 40 minutes that sounded 
short to me. But I’ve been in the ML biz for too long…

Q: What is “bias”?
A: That depends. The word “bias” shows up all over machine learning! 

Watch out…
1. The additive term in a linear model (i.e. b in wTx + b)
2. Inductive bias is the principle by which a learning algorithm 

generalizes to unseen examples
3. Bias of a model in a societal sense may refer to racial, socio-

economic, gender biases that exist in the predictions of your 
model

4. The difference between the expected predictions of your model 
and the ground truth (as in “bias-variance tradeoff”)



Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 27
– Due: Fri, Mar 18 at 11:59pm

• Peer Tutoring
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SAMPLE COMPLEXITY RESULTS
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Sample Complexity Results

8

Realizable Agnostic

Four Cases we care about…



Background: Contrapositive
• Definition: The contrapositive of the statement 

A ⇒ B 
is the statement

¬B ⇒ ¬A
and the two are logically equivalent (i.e. they share 
all the same truth values in a truth table!)

• Proof by contrapositive:
If you want to prove A ⇒ B, instead prove ¬B ⇒ ¬A 
and then conclude that A ⇒ B

• Caution: sometimes negating a statement is easier 
said than done, just be careful!
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Probably Approximately Correct 
(PAC) Learning

Whiteboard:
– Proof of Theorem 1
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

We need a new definition of 
“complexity” for a Hypothesis space 
for these results (see VC Dimension)



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



VC-DIMENSION

19



Finite vs. Infinite |H|

Finite |H|
• Example: H = the set of all 

decision trees of depth D over 
binary feature vectors of length 
M

• Example: H = the set of all
conjunctions over binary feature 
vectors of length M

Infinite |H|
• Example: H = the set of all linear

decision boundaries in M
dimensions

• Example: H = the set of all neural 
networks with 1-hidden layer 
with length M inputs
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IMPORTANT NOTE

In our discussion of PAC 
Learning, we are only 
concerned with the 

problem of binary
classification
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Def: A hypothesis ℎ applied to some dataset 𝑆
generates a labeling of 𝑆.

Def: Let ℋ[𝑆] be the set of all (distinct) 
labelings of 𝑆 generated by hypotheses ℎ ∈ ℋ. 
ℋ shatters 𝑆 if ℋ 𝑆 = 2 !

Equivalently, the hypotheses in ℋ can 
generate every possible labeling of 𝑆.

Labelings & Shattering



Whiteboard:
– Shattering example: binary classification
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Labelings & Shattering
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Def: The VC-dimension (or Vaporik-Chervonenkis
dimension) of ℋ is the cardinality of the largest 
set 𝑆 such that ℋ can shatter 𝑆.

Special Case: If ℋ can shatter arbitrarily large finite 
sets, then the VC-dimension of ℋ is infinity

Notation: We write VC ℋ = 𝑑 to say the VC-
Dimension of a hypothesis space ℋ is 𝑑

VC-dimension
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Proof Technique: To prove that VC ℋ = 𝑑
there are two steps:

1. show that there exists a set of 𝑑 points that 
can be shattered by ℋ
è VC ℋ ≥ 𝑑

2. show that there does NOT exist a set of 𝑑 + 1
points that can be shattered by ℋ
è VC ℋ < 𝑑 + 1

VC-dimension Proof



Whiteboard:
– VC-dimension Example: linear separators
– Proof sketch of VC-dimension for linear 

separators in 2D
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VC-dimension



∃ vs. ∀
VC-dimension
– Proving VC-dimension requires us to show that 

there exists (∃) a dataset of size d that can be 
shattered and that there does not exist (∄) a 
dataset of size d+1 that can be shattered

Shattering
– Proving that a particular dataset can be 

shattered requires us to show that for all (∀) 
labelings of the dataset, our hypothesis class 
contains a hypothesis that can correctly classify it
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VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC-dimension of H = 1D positive rays. That is for a threshold w, 
everything to the right of w is labeled as +1, everything else is labeled -1.

+-
w



VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:

Question:
What is the VC-dimension of H = 1D positive intervals. That is for an interval 
(w1, w2), everything inside the interval is labeled as +1, everything else is 
labeled -1.

+- -
w1 w2



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



SLT-STYLE COROLLARIES
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SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…



SLT-style Corollaries
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SLT-style Corollaries
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SLT-style Corollaries
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Should these corollaries inform 
how we do model selection?



Learning Theory & Model Selection
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Q: Is 
Corollary 
4 useful? 

A: Yes!

VC(H)
(i.e. complexity)

error
(i.e. lower è
good data fit)

Key Point: 
we want 

to tradeoff 
between 

low 
training 

error and 
keeping H 

simple 
(low VC-

Dim)



Questions For Today
1. Given a classifier with zero training error, what 

can we say about generalization error?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about generalization error?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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Learning Theory Objectives
You should be able to…
• Identify the properties of a learning setting and 

assumptions required to ensure low generalization 
error

• Distinguish true error, train error, test error
• Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

• Apply sample complexity bounds to real-world 
learning examples

• Distinguish between a large sample and a finite 
sample analysis

• Theoretically motivate regularization
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PROBABILITY
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Random Variables: Definitions
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Discrete 
Random
Variable

Random variable whose values come 
from a countable set (e.g. the natural 
numbers or {True, False})

Probability 
mass 
function 
(pmf)

Function giving the probability that 
discrete r.v. X takes value x.

X

p(x) := P (X = x)

p(x)



Random Variables: Definitions
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Continuous 
Random
Variable

Random variable whose values come 
from an interval or collection of 
intervals (e.g. the real numbers or the 
range (3, 5))

Probability 
density 
function 
(pdf)

Function the returns a nonnegative 
real indicating the relative likelihood 
that a continuous r.v. X takes value x

X

f(x)

• For any continuous random variable: P(X = x) = 0
• Non-zero probabilities are only available to intervals: 

P (a � X � b) =

� b

a
f(x)dx



Random Variables: Definitions
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Cumulative
distribution 
function

Function that returns the probability 
that a random variable X is less than or 
equal to x:

F (x)

F (x) = P (X � x)

• For discrete random variables:

• For continuous random variables:

F (x) = P (X � x) =
�

x�<x

P (X = x�) =
�

x�<x

p(x�)

F (x) = P (X � x) =

� x

��
f(x�)dx�



Notational Shortcuts
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P (A|B) =
P (A, B)

P (B)

� For all values of a and b:

P (A = a|B = b) =
P (A = a, B = b)

P (B = b)

A convenient shorthand:



Notational Shortcuts

But then how do we tell P(E) apart from P(X) ?
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Event Random
Variable

P (A|B) =
P (A, B)

P (B)
Instead of writing:

We should write:
PA|B(A|B) =

PA,B(A, B)

PB(B)

…but only probability theory textbooks go to such lengths.



COMMON PROBABILITY 
DISTRIBUTIONS
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Common Probability Distributions
• For Discrete Random Variables:

– Bernoulli
– Binomial
– Multinomial
– Categorical
– Poisson

• For Continuous Random Variables:
– Exponential
– Gamma
– Beta
– Dirichlet
– Laplace
– Gaussian (1D)
– Multivariate Gaussian
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Common Probability Distributions

Beta Distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
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023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1
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¡

Æ = 0.1,Ø = 0.9
Æ = 0.5,Ø = 0.5
Æ = 1.0,Ø = 1.0
Æ = 5.0,Ø = 5.0
Æ = 10.0,Ø = 5.0

probability density function:



Common Probability Distributions

Dirichlet Distribution
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035
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037
038
039
040
041
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053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1

0

1

2

3

4

f
(¡

|Æ
,Ø

)

0 0.2 0.4 0.6 0.8 1
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Æ = 0.1,Ø = 0.9
Æ = 0.5,Ø = 0.5
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Æ = 5.0,Ø = 5.0
Æ = 10.0,Ø = 5.0

probability density function:



Common Probability Distributions

Dirichlet Distribution
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022
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029
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032
033
034
035
036
037
038
039
040
041
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
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probability density function:



EXPECTATION AND VARIANCE
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Expectation and Variance

64

• Discrete random variables:

E[X] =
�

x�X
xp(x)

Suppose X can take any value in the set X .

• Continuous random variables:

E[X] =

� +�

��
xf(x)dx

The expected value of X is E[X]. Also called the mean.



Expectation and Variance
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The variance of X is Var(X).
V ar(X) = E[(X � E[X])2]

• Discrete random variables:

V ar(X) =
�

x�X
(x � µ)2p(x)

• Continuous random variables:

V ar(X) =

� +�

��
(x � µ)2f(x)dx

µ = E[X]



MULTIPLE RANDOM VARIABLES

Joint probability
Marginal probability
Conditional probability

66



Joint Probability

67

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

68

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

69
Slide from Sam Roweis (MLSS, 2005)

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)"] =

∫

x
(x−m)(x−m)"p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)"] = C

=

∫

xy
(x−mx)(y −my)"p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)



Independence and 
Conditional Independence

70

Bayes’ Rule

•Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)

Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

•Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

•Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x)− log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).

Slide from Sam Roweis (MLSS, 2005)



MAXIMUM LIKELIHOOD
ESTIMATION (MLE)
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Likelihood Function
• Given N independent, identically distributed (iid) samples

D = {x(1), x(2), …, x(N)} from a random variable X …

• The likelihood function is 
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

L(θ) = p(x(1)|θ) p(x(2)|θ) … p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

L(θ) = f(x(1)|θ) f(x(2)|θ) … f(x(N)|θ)

• The log-likelihood function is
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

l(θ) = log f(x(1)|θ) +… + log f(x(N)|θ)

84

The likelihood tells us 
how likely one sample is 

relative to another

One R.V.



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair
of random variables X, Y

• The conditional likelihood function:
– Case 1: Y is discrete with pmf p(y | x, θ)

L(θ) = p(y(1) | x(1), θ) …p(y(N) | x(N), θ) 
– Case 2: Y is continuous with pdf f(y | x, θ)

L(θ) = f(y(1) | x(1), θ) …f(y(N) | x(N), θ) 

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf p(x,y|θ)

L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf f(x,y|θ) 

L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair
of random variables X, Y

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf p(x,y|θ)

L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf f(x,y|θ) 

L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)
– Case 3: Y is discrete with pmf p(y|β) and 

X is continuous with pdf f(x|y,α) 
L(α, β) = f(x(1)| y(1), α) p(y(1)|β) … f(x(N)| y(N), α) p(y(N)|β)

– Case 4: Y is continuous with pdf f(y|β) and 
X is discrete with pmf p(x|y,α) 

L(α, β) = p(x(1)| y(1), α) f(y(1)|β) … p(x(N)| y(N), α) f(y(N)|β)

Mixed 
discrete/ 

continuous!



MLE

87

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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Recipe for Closed-form MLE
1. Assume data was generated iid from some model, i.e., write 

the generative story
x(i) ~ p(x|θ)

2. Write the log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives, i.e., the gradient
𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE
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MLE of Exponential Distribution

Whiteboard
– Example: MLE of Exponential Distribution
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MLE

In-Class Exercise
Show that the MLE of 
parameter ɸ for N 
samples drawn from 
Bernoulli(ɸ) is:

94

Steps to answer:
1. Write log-likelihood 

of sample
2. Compute derivative 

w.r.t. ɸ
3. Set derivative to 

zero and solve for ɸ



MLE
Question:
Assume we have N iid
samples x(1), x(2), …, x(N)

drawn from a Bernoulli(ɸ).

What is the log-likelihood of 
the data l(ɸ)?

Assume N1 = # of (x(i) = 1)
N0 = # of (x(i) = 0)

95

Answer:
A. l(ɸ) = N1 log(ɸ) + N0 (1 - log(ɸ))
B. l(ɸ) = N1 log(ɸ) + N0 log(1-ɸ)
C. l(ɸ) = log(ɸ)N1 + (1 - log(ɸ))N0

D. l(ɸ) = log(ɸ)N1 + log(1-ɸ)N0

E. l(ɸ) = N0 log(ɸ) + N1 (1 - log(ɸ))
F. l(ɸ) = N0 log(ɸ) + N1 log(1-ɸ)
G. l(ɸ) = log(ɸ)N0 + (1 - log(ɸ))N1

H. l(ɸ) = log(ɸ)N0 + log(1-ɸ)N1

I. l(ɸ) = the most likely answer



MLE
Question:
Assume we have N iid
samples x(1), x(2), …, x(N)

drawn from a Bernoulli(ɸ).

What is the derivative of the 
log-likelihood 𝜕l(θ)/𝜕θ?

Assume N1 = # of (x(i) = 1)
N0 = # of (x(i) = 0)
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Answer:
A. 𝜕l(θ)/𝜕θ = ɸN1 - (1 - ɸ)N0

B. 𝜕l(θ)/𝜕θ = ɸ / N1 - (1 - ɸ) / N0

C. 𝜕l(θ)/𝜕θ = N1 / ɸ - N0 / (1 - ɸ)
D. 𝜕l(θ)/𝜕θ = log(ɸ) / N1 -

log(1 - ɸ) / N0

E. 𝜕l(θ)/𝜕θ = N1 / log(ɸ) -
N0 / log(1 - ɸ)

F. 𝜕l(θ)/𝜕θ = the derivative of 
the most likely answer



Learning from Data (Frequentist)

Whiteboard
– Example: MLE of Bernoulli
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MAP ESTIMATION
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MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽,
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 ,
%&'

(

𝑝 𝐱 % 𝜽



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽,
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 ,
%&'

(

𝑝 𝐱 % 𝜽

Prior

Important!
Usually the parameters are 
continuous, so the prior is a 
probability density function



Learning from Data (Bayesian)

Whiteboard
– maximum a posteriori (MAP) estimation
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Recipe for Closed-form MLE
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1. Assume data was generated iid from some model, i.e., write 
the generative story

x(i) ~ p(x|θ)
2. Write the log-likelihood

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE



1. Assume data was generated iid from some model, i.e., write 
the generative story

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write the log posterior

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕lMAP(θ)/𝜕θ1 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to equal zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMAP
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Recipe for Closed-form MAP



Learning from Data (Bayesian)

Whiteboard
– Example: MAP of Beta-Bernoulli Model
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Takeaways
• One view of what ML is trying to accomplish is 

function approximation
• The principle of maximum likelihood 

estimation provides an alternate view of 
learning

• Synthetic data can help debug ML algorithms
• Probability distributions can be used to model

real data that occurs in the world
(don’t worry we’ll make our distributions more 
interesting soon!)
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Learning Objectives
MLE / MAP

You should be able to…
1. Recall probability basics, including but not limited to: discrete 

and continuous random variables, probability mass functions, 
probability density functions, events vs. random variables, 
expectation and variance, joint probability distributions, 
marginal probabilities, conditional probabilities, independence, 
conditional independence

2. Describe common probability distributions such as the Beta, 
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

3. State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

4. State the principle of maximum a posteriori estimation and 
explain why we use it

5. Derive the MLE or MAP parameters of a simple model in closed 
form
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