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Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 27
– Due: Fri, Mar 18 at 11:59pm

• Homework 6: Learning Theory / Generative
Models
– Out: Fri, Mar. 18
– Due: Fri, Mar. 25 at 11:59pm
– IMPORTANT: only 2 grace/late days permitted

• Exam 2 (Thu, Mar 3rd)
• Exam 3 (Tue, May 3rd)
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PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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MAXIMUM LIKELIHOOD
ESTIMATION (MLE)
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Likelihood Function
• Given N independent, identically distributed (iid) samples

D = {x(1), x(2), …, x(N)} from a random variable X …

• The likelihood function is 
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

L(θ) = p(x(1)|θ) p(x(2)|θ) … p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

L(θ) = f(x(1)|θ) f(x(2)|θ) … f(x(N)|θ)

• The log-likelihood function is
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

l(θ) = log f(x(1)|θ) +… + log f(x(N)|θ)
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The likelihood tells us 
how likely one sample is 

relative to another

One R.V.



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair
of random variables X, Y

• The conditional likelihood function:
– Case 1: Y is discrete with pmf p(y | x, θ)

L(θ) = p(y(1) | x(1), θ) …p(y(N) | x(N), θ) 
– Case 2: Y is continuous with pdf f(y | x, θ)

L(θ) = f(y(1) | x(1), θ) …f(y(N) | x(N), θ) 

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf p(x,y|θ)

L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf f(x,y|θ) 

L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair
of random variables X, Y

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf p(x,y|θ)

L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf f(x,y|θ) 

L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)
– Case 3: Y is discrete with pmf p(y|β) and 

X is continuous with pdf f(x|y,α) 
L(α, β) = f(x(1)| y(1), α) p(y(1)|β) … f(x(N)| y(N), α) p(y(N)|β)

– Case 4: Y is continuous with pdf f(y|β) and 
X is discrete with pmf p(x|y,α) 

L(α, β) = p(x(1)| y(1), α) f(y(1)|β) … p(x(N)| y(N), α) f(y(N)|β)

Mixed 
discrete/ 

continuous!



MLE
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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Recipe for Closed-form MLE
1. Assume data was generated iid from some model, i.e., write 

the generative story
x(i) ~ p(x|θ)

2. Write the log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives, i.e., the gradient
𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE
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EXAMPLE: 
MLE FOR LINEAR REGRESSION

What we earlier called “Closed Form Solution for Linear Regression”
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Linear Regression as Function 
Approximation
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Linear Regression: Closed Form
Optimization Method #2: 
Closed Form
1. Evaluate 

2. Return θMLE
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.59 0.43 0.2

x

y

y = h*(x)
(unknown)

t
MLE

h(x; θ(MLE))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



MLE for Linear Regression

You’ll work through 
the view of linear 
regression as a 
probabilistic model in 
the homework!
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MLE EXAMPLES
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MLE of Exponential Distribution
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• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.

Goal:

Steps:



MLE of Exponential Distribution
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• First write down log-likelihood of sample.

�(�) =
N�

i=1

HQ; f(x(i)) (1)

=
N�

i=1

HQ;(� 2tT(��x(i))) (2)

=
N�

i=1

HQ;(�) + ��x(i) (3)

= N HQ;(�) � �
N�

i=1

x(i) (4)

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE of Exponential Distribution
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• Compute first derivative, set to zero, solve for �.

d�(�)

d�
=

d

d�
N HQ;(�) � �

N�

i=1

x(i) (1)

=
N

�
�

N�

i=1

x(i) = 0 (2)

� �MLE =
N

�N
i=1 x(i)

(3)

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE of Bernoulli

In-Class Exercise
Show that the MLE of 
parameter ɸ for N 
samples drawn from 
Bernoulli(ɸ) is:
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Steps to answer:
1. Write log-likelihood 

of sample
2. Compute derivative 

w.r.t. ɸ
3. Set derivative to 

zero and solve for ɸ



MLE of Bernoulli
Question:
Assume we have N iid
samples x(1), x(2), …, x(N)

drawn from a Bernoulli(ɸ).

Step 1: What is the log-
likelihood of the data l(ɸ)?

Assume N1 = # of (x(i) = 1)
N0 = # of (x(i) = 0)
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Answer:
A. l(ɸ) = N1 log(ɸ) + N0 (1 - log(ɸ))
B. l(ɸ) = N1 log(ɸ) + N0 log(1-ɸ)
C. l(ɸ) = log(ɸ)N1 + (1 - log(ɸ))N0

D. l(ɸ) = log(ɸ)N1 + log(1-ɸ)N0

E. l(ɸ) = N0 log(ɸ) + N1 (1 - log(ɸ))
F. l(ɸ) = N0 log(ɸ) + N1 log(1-ɸ)
G. l(ɸ) = log(ɸ)N0 + (1 - log(ɸ))N1

H. l(ɸ) = log(ɸ)N0 + log(1-ɸ)N1

I. l(ɸ) = N0 + N1



MLE of Bernoulli
Question:
Assume we have N iid
samples x(1), x(2), …, x(N)

drawn from a Bernoulli(ɸ).

Step 2: What is the derivative
of the log-likelihood 
𝜕l(θ)/𝜕θ?

Assume N1 = # of (x(i) = 1)
N0 = # of (x(i) = 0)
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Answer:
A. 𝜕l(θ)/𝜕θ = ɸN1 - (1 - ɸ)N0

B. 𝜕l(θ)/𝜕θ = ɸ / N1 - (1 - ɸ) / N0

C. 𝜕l(θ)/𝜕θ = N1 / ɸ - N0 / (1 - ɸ)
D. 𝜕l(θ)/𝜕θ = log(ɸ) / N1 -

log(1 - ɸ) / N0

E. 𝜕l(θ)/𝜕θ = N1 / log(ɸ) -
N0 / log(1 - ɸ)

F. 𝜕l(θ)/𝜕θ = 0



MLE of Bernoulli

Whiteboard
– Example: MLE of Bernoulli
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MAP ESTIMATION
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MLE vs. MAP

36

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽,
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 ,
%&'

(

𝑝 𝐱 % 𝜽



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽,
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 ,
%&'

(

𝑝 𝐱 % 𝜽

Prior

Important!
Usually the parameters are 
continuous, so the prior is a 
probability density function



Learning from Data (Bayesian)

Whiteboard
– maximum a posteriori (MAP) estimation
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Recipe for Closed-form MLE
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1. Assume data was generated iid from some model, i.e., write 
the generative story

x(i) ~ p(x|θ)
2. Write the log-likelihood

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE



1. Assume data was generated iid from some model, i.e., write 
the generative story

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write the log posterior

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕lMAP(θ)/𝜕θ1 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to equal zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMAP
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Recipe for Closed-form MAP



MAP of Beta-Bernoulli Model

Whiteboard
– Example: MAP of Beta-Bernoulli Model
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Takeaways
• One view of what ML is trying to accomplish is 

function approximation
• The principle of maximum likelihood 

estimation provides an alternate view of 
learning

• Synthetic data can help debug ML algorithms
• Probability distributions can be used to model

real data that occurs in the world
(don’t worry we’ll make our distributions more 
interesting soon!)
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Learning Objectives
MLE / MAP

You should be able to…
1. Recall probability basics, including but not limited to: discrete 

and continuous random variables, probability mass functions, 
probability density functions, events vs. random variables, 
expectation and variance, joint probability distributions, 
marginal probabilities, conditional probabilities, independence, 
conditional independence

2. Describe common probability distributions such as the Beta, 
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

3. State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

4. State the principle of maximum a posteriori estimation and 
explain why we use it

5. Derive the MLE or MAP parameters of a simple model in closed 
form
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NAÏVE BAYES
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Naïve Bayes

• Why are we talking about Naïve Bayes?
– It’s just another decision function that fits into 

our “big picture” recipe from last time
– But it’s our first example of a Bayesian Network 

and provides a clearer picture of probabilistic 
learning

– Just like the other Bayes Nets we’ll see, it admits 
a closed form solution for MLE and MAP

– So learning is extremely efficient (just counting)
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Fake News Detector

50

The Economist The Onion

Today’s Goal: To define a generative model of emails 
of two different classes (e.g. real vs. fake news)



Fake News Detector
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AP The Onion

We can pretend the natural process generating these vectors is stochastic…



Naive Bayes: Model

Whiteboard
– Generating synthetic "labeled documents"
– Definition of model
– Naive Bayes assumption
– Counting # of parameters with / without NB 

assumption
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Model 1: Bernoulli Naïve Bayes
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If HEADS, flip 
each red coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xm

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



What’s wrong with the 
Naïve Bayes Assumption?

The features might not be independent!!
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• Example 1:
– If a document contains the word 

“Donald”, it’s extremely likely to 
contain the word “Trump”

– These are not independent!

• Example 2:
– If the petal width is very high, 

the petal length is also likely to 
be very high



Naïve Bayes: Learning from Data

Whiteboard
– Data likelihood
– MLE for Naive Bayes
– Example: MLE for Naïve Bayes with Two 

Features
– MAP for Naive Bayes
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Recipe for Closed-form MLE
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1. Assume data was generated iid from some model, i.e., write 
the generative story

x(i) ~ p(x|θ)
2. Write the log-likelihood

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE


