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Reminders

Homework 5: Neural Networks
— Out: Sun, Feb 27
— Due: Fri, Mar 18 at 11:59pm

Homework 6: Learning Theory [ Generative
Models

— Out: Fri, Mar. 18
— Due: Fri, Mar. 25 at 11:59pm

Exam 2 (Thu, Mar 3rd)
Exam 3 (Tue, May 3rd)




PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation Probabilistic Learning

Previously, we assumed that our Today, we assume that our

output was generated using a output is sampled from a

deterministic target function: conditional probability
distribution:

X ~ () x) ~ p ()
y( = ¢*(x() (D)~ p*(.‘x(i))
Our goal was to learn a Our goal is to learn a probability

hypothesis h(x) that best distribution p(y|x) that best
approximates c*(x) approximates p~(y|x)



MAXIMUM LIKELIHOOD
ESTIMATION (MLE)



Likelihood Function | ©neR.V.

* Given N independent, identically distributed (iid) samples
D = {x(, x®), ..., xM} from a random variable X ...

* The likelihood function is
— Case 1: Xis discrete with probability mass function (pmf) p(x|0)
L(B) = p(x(]B) p(x)|6) ... p(xN]6)
— Case 2: X is continuous with probability density function (pdf) f(x|6)
L(8) = f(x(|6) f(x*)]B) ... f(x(V]6) The likelihood tells us
how likely one sample is
* The log-likelihood function is relative to another
— Case 1: X is discrete with probability mass function (pmf) p(x|0)
40) =log p(x[B) + ... +log p(x(N)|B)
— Case 2: X is continuous with probability density function (pdf) f(x|0)
40) = log f(xM]0) +... +log f(xN|6)



Likelihood Function ' TWoR.V.s

* Given Niid samples D = {(x(, y®), ..., (x(N), y(N\))} from a pair
of random variables X, Y

* The conditional likelihood function:
— Case 1: Y is discrete with pmf p(y | x, 6)
L(B) = p(yW [ x, ©) ... p(y™ | x(N), ©)
— Case 2:Y is continuous with pdf f(y | x, 6)
L(0) = f(y("| x(V, ©) ... f(yN | xN), ©)

* The joint likelihood function:

— Case 1: Xand Y are discrete with pmf p(x,y|0)
L(68) = p(x(, yI[B) ... p(x(M), yN]|6)

— Case 2: Xand Y are continuous with pdf f(x,y|0)
L(6) = f(x(, y)[B) ... f(x(), yV[B)



Likelihood Function ' TWoR.V.s

 Given Niid samples D = {(x(, y®), ..., (x(N), y(N))} from a pair
of random variables X, Y

* The joint likelihood function:

Mixed
discrete/
continuous!

— Case 3: Y is discrete with pmf p(y|B) and
X is continuous with pdf f(x|y,a)
L(a, B) = (x| y, @) p(y @) ... F(xM] y™, &) p(y™]B)
— Case 4: Y is continuous with pdf f(y|B) and
X is discrete with pmf p(x|y,a)

L(a, B) = p(x] y, @) f(yP|B) ... p(x] y), a0) F(y™]B)



MLE

Suppose we have data D = {z(V}N

Principle of Maximum Likelihood Estimation:
Choose the parameters that maXImlze the likelihood

of the data.
""" = argmax Hp ()]0)

0 1=1
Maximum Likelihood Estimate (MLE)

A

/\L@

>

MLE

D k-



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x0 ~p(x|6)
Write the log-likelihood
(0) = log p(x(I|@) + ... + log p(x(N)]|©)

Compute partial derivatives, i.e., the gradient
040)/08, = ...

65(9)/09M — oo
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that 0) is
concave down at OML-



EXAMPLE:
MLE FOR LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : he(x) = 87 x,0 ¢ RM}




Linear Regression: Closed Form

(8

1.0

Optimization Method #2:
Closed Form

1.  Evaluate
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MLE for Linear Regression

You’ll work through
the view of linear
regression as d
probabilistic model in
the homework!



MLE EXAMPLES



MLE of Exponential Distribution

Goal:
e pdf of Exponential(\): f(x) = \e™?
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE fordataD = {g;(i)}g\il

Steps:
e First write down log-likelihood of sample.
e Compute first derivative, set to zero, solve for .
e Compute second derivative and check that it is
concave down at AMLE,



MLE of Exponential Distribution

e pdf of Exponential(\): f(z) = Ae™*
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE fordataD = {z("}N |

e First write down log-likelihood of sample.

(X) = ) _log (=) (1)

=) log(Aexp(—Az?)) (2)

i=1
N o

Z log(\) + =z (3)

i=1

Nlog(A) =AY z (4)



MLE of Exponential Distribution

e pdf of Exponential(\): f(z) = Ae™*
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE fordataD = {z("}N |

e Compute first derivative, set to zero, solve for \.

() d Sl
% = —~Nlog(}) — ADd oz (1)
1=1
N
N :
=5 2= ()
1=1
N
= X = (3)




MLE of Bernoulli

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from |5 compute derivative
Bernoulli(¢) is: w.r.t. ¢
3. Set derivative to

Number of z; = 1 zero and solve for ¢

PMLE =

N



MLE of Bernoulli

Question:

Assume we have N iid
samples x(, x@) .. x(N)
drawn from a Bernoulli(¢).

Step 1: What is the log-
likelihood of the data 4 ¢)?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

~TIomMmonNwm>

I(®) =N, log(®) + N, (1-log(¢))
I(¢) = N,log(¢) + N, log(1-9)
I(®) = log(¢)"" + (1- log(p))N°
(@) = log($)™" + log(1-$)™°

I(®) = N, log(@) + N, (1-log(¢))
I(¢) = N, log(@) + N, log(1-9)
(@) = log(9)"° + (1- log(¢))""
I(®) = log(@)"° + log(1-p)""

I(¢) =N, + N,



MLE of Bernoulli

Question:

Assume we have N iid
samples x(, x®), ... x(N)
drawn from a Bernoulli(¢).

of the log-likelihood
0¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

A.
B.
C.

Step 2: What is the derivative D.

E.

F.

040)/06 = ¢"" - (1- §)"°
046)/08 =@ /N, - (1-9) /N,
0¢0)/06 =N,/ §-N,/(1-9)
040)/00 = log(¢) / N, -

log(1 ; ¢) / No
0¢6)/06 =N,/ log(¢) -

No/log(1 ; ¢)
0¢(0)/90 = 0



MLE of Bernoulli

Whiteboard
— Example: MLE of Bernoulli



MAP ESTIMATION



MLE vs. MAP

Suppose we have data D = {z(V 1Y




MLE vs. MAP

Suppose we have data D = {z(V}N

Principle of Maxil Important!

Choose the para hood

Usually the parameters are
of the data. continuous, so the prioris a
6= = argmq probability density function F)

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) E¢ /nation:
Choose the parameters that maximize the\ _Ssterior
of the parameters given the data.  Prior

N
OMLE = argmaxg p(0|D) = argmaxy f(0) Hp(x(i)‘e)
i=1

Maximum a posteriori (MAP) estimate



Learning from Data (Bayesian)

Whiteboard
— maximum a posteriori (MAP) estimation



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x0 ~p(x|6)
Write the log-likelihood
(0) = log p(x(I|@) + ... + log p(x(N)]|©)

Compute partial derivatives, i.e., the gradient
040)/08, = ...

65(9)/09M — oo
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that 0) is
concave down at OML-



Recipe for Closed-form MAP

Assume data was generated iid from some model, i.e., write
the generative story

0 ~ p(0) and then for all i: x0) ~ p(x|0)
Write the log posterior

tuar(8) = log p() + log p(x|@) + ... +log p(xV]6)

Compute partial derivatives, i.e., the gradient
OZMAP(G)/GQ — eoe

OZMAP(G)/aeM — o
Set derivatives to equal zero and solve for 6
04ar(0)/00,, =0 forallm e {1, ..., M}
OMAP = solution to system of M equations and M variables

Compute the second derivative and check that ¢0) is
concave down at OMA?



MAP of Beta-Bernoulli Model

Whiteboard
— Example: MAP of Beta-Bernoulli Model



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE [ MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



NAIVE BAYES



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Fake News Detector

Today’s Goal: To define a generative model of emails

of two different classes (e.g. real vs. fake news

The Economist

Soybean Prices Surge as South
American Outlook Deteriorates

Drought is pushing prices up, with shortfalls in production expected to
boost demand for U.S. beans

Agricultural research firm Farm Futures last month forecast that planted soybean
acreage in the U.S. may exceed corn for only the second time in history.

PHOTO: RORY DOYLE/BLOOMBE EWS

By Kirk Maltais
Feb.12,20227:00 am ET

@ smare  p A\ TEXT 8

© Listentoarticle (2minutes)

U.S. soybean prices have surged in recent months amid shrinking forecasts for
South American crops.

Prices for soybeans—the base ingredient in many food products, poultry and
livestock feed and renewable fuel, among other things—are edging back toward
high

reached last year, which hadn’t previously been seen in a decade

The Onion

Watchdog Warns Nearly Every Food
Brand In U.S. Owned By Handful Of
Companies, Which In Turn Are
Controlled By Newman’s Own

Today 9:25AM | Alerts

WASHINGTON—Calling for a full-scale Federal Trade Commission
investigation into the sauce and salad dressing brand, the American Antitrust
Institute issued a report Thursday warning that nearly every food brand in the
United States was owned by a handful of companies, which in turn were
controlled by Newman's Own. “Kellogg’s, General Mills, PepsiCo, Kraft Heinz—
all of these companies are just Newman's Own by another name,” said Diana L.

50



Fake News Detector

W) A - The Onion
Cowvegion #£1:
‘&?fﬂﬁol:%‘\’ “" b‘) - o -Wls
0 word s
::- 7 MT* st Szto:'\%""'x '
\ov £Z:
C,D"M Z \\/ Ws{_ . gw#,
)?(:)= o] ! | [ {U“f “1 indicsbor,
FEII

We can pretend the natural process generating these vectors is stochastic...
51



Naive Bayes: Model

Whiteboard
— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
y X; Xy X3 e Xy

“" ol 1o 1 || 1 “"

1 o|1]o0 1
1 111 | 1 1
0 oO| 0| 1 1
0 1] 0| 1 0
1 110 1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
Secun't}.f Briefing Asking About Egyptian

— If a document contains the word o
“Donald”, it’s extremely likely to S
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high

55



Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x0 ~p(x|6)
Write the log-likelihood
(0) = log p(x(I|@) + ... + log p(x(N)]|©)

Compute partial derivatives, i.e., the gradient
040)/08, = ...

65(9)/09M — oo
Set derivatives equal to zero and solve for ©
040)/08,,=o forallme{y, ..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that 0) is
concave down at OML-



