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Reminders

• Homework 6: Learning Theory / Generative
Models
– Out: Fri, Mar. 18
– Due: Fri, Mar. 25 at 11:59pm
– IMPORTANT: only 2 grace/late days permitted

• Exam 2 (Thu, Mar 3rd)
• Exam 3 (Tue, May 3rd)
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Q&A
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Q: Why would we use Naïve Bayes? Isn’t it too 
Naïve?

A: Naïve Bayes has one key advantage over 
methods like Perceptron, Logistic 
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative 
training procedures that might require 
hundreds of epochs, Naïve Bayes computes 
its parameters in closed form by counting.



NAÏVE BAYES
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Model 1: Bernoulli Naïve Bayes
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If HEADS, flip 
each red coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xm

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



What’s wrong with the 
Naïve Bayes Assumption?

The features might not be independent!!
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• Example 1:
– If a document contains the word 

“Donald”, it’s extremely likely to 
contain the word “Trump”

– These are not independent!

• Example 2:
– If the petal width is very high, 

the petal length is also likely to 
be very high



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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Naïve Bayes: Learning from Data

Whiteboard
– Data likelihood
– MLE for Naive Bayes
– Example: MLE for Naïve Bayes with Two 

Features
– MAP for Naive Bayes
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BERNOULLI NAÏVE BAYES
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Model 1: Bernoulli Naïve Bayes
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Data: Binary feature vectors, Binary labels

Generative Story: Model:



Model 1: Bernoulli Naïve Bayes
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Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes

19

Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 1: 
What is the MLE of ɸ? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 2: 
What is the MLE of θ0,1? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes

21

Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:

MLE for Naïve 
Bayes is a splendid 
learning algorithm 
for when you have 

say billions of 
training examples 
and hundreds of 

millions of features!

You only need one 
pass through the 
data to perform 
some counting.



MAP ESTIMATION FOR 
BERNOULLI NAÏVE BAYES
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MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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A Shortcoming of MLE
For Naïve Bayes, suppose we never observe the word 
“unicorn” in a real news article.
In this case, what is the MLE of the following quantity?
p(xunicorn | y=real) = 

Recall:

24

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

Now suppose we observe the word “unicorn” at test 
time. What is the posterior probability that the article 
was a real article?



Recipe for Closed-form MAP 
Estimation

1. Assume data was generated i.i.d. from some model
(i.e. write the generative story)

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write log-likelihood

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives (i.e. gradient)

𝜕lMAP(θ)/𝜕θ1 = …
𝜕lMAP(θ)/𝜕θ2 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMAP
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Model 1: Bernoulli Naïve Bayes
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1. Generative Story:
The parameters are drawn 
once for the entire dataset.

3. MAP Estimators:

Take derivatives, set to zero and solve…

MAP Estimation (Beta Prior)
2. Likelihood:

φ ∼ Beta(α′,β′)

form ∈ {1, . . . ,M}:
for y ∈ {0, 1}:

θm,y ∼ Beta(α,β)
for i ∈ {1, . . . , N}:

y(i) ∼ Bernoulli(φ)
form ∈ {1, . . . ,M}:

x(i)
m ∼ Bernoulli(θy(i),m)

!MAP (φ,θ)

= HQ; [p(φ,θ|α′,β′,α,β)p(D|φ,θ)]

= HQ;

[(

p(φ|α′,β′)
M
∏

m=1

p(θ0,m|α,β)

)(

N
∏

i=1

p(t(i), y(i)|φ,θ)

)]

φ =
(α′ − 1) +Ny=1

(α′ − 1) + (β′ − 1) +N

θ0,m =
(α− 1) +Ny=0,xm=1

(α− 1) + (β − 1) +Ny=0

θ1,m =
(α− 1) +Ny=1,xm=1

(α− 1) + (β − 1) +Ny=1

∀m ∈ {1, . . . ,M}



Model 1: Bernoulli Naïve Bayes
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1. Generative Story:
The parameters are drawn 
once for the entire dataset.

3. MAP Estimators:

Take derivatives, set to zero and solve…

MAP Estimation (Beta Prior)
2. Likelihood:

φ ∼ Beta(α′,β′)

form ∈ {1, . . . ,M}:
for y ∈ {0, 1}:

θm,y ∼ Beta(α,β)
for i ∈ {1, . . . , N}:

y(i) ∼ Bernoulli(φ)
form ∈ {1, . . . ,M}:

x(i)
m ∼ Bernoulli(θy(i),m)

!MAP (φ,θ)

= HQ; [p(φ,θ|α′,β′,α,β)p(D|φ,θ)]

= HQ;

[(

p(φ|α′,β′)
M
∏

m=1

p(θ0,m|α,β)

)(

N
∏

i=1

p(t(i), y(i)|φ,θ)

)]

φ =
(α′ − 1) +Ny=1

(α′ − 1) + (β′ − 1) +N

θ0,m =
(α− 1) +Ny=0,xm=1

(α− 1) + (β − 1) +Ny=0

θ1,m =
(α− 1) +Ny=1,xm=1

(α− 1) + (β − 1) +Ny=1

∀m ∈ {1, . . . ,M}

A common choice 
for the class prior:

⍺’ = 1 and β’ = 1

Since Beta(1,1) = 
Uniform(0,1)



THE NAÏVE BAYES FRAMEWORK
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Many NB Models
There are many Naïve Bayes models!

1. Bernoulli Naïve Bayes:
– for binary features

2. Multinomial Naïve Bayes:
– for integer features

3. Gaussian Naïve Bayes: 
– for continuous features

4. Multi-class Naïve Bayes:
– for classification problems with > 2 classes
– event model could be any of Bernoulli, Gaussian, 

Multinomial, depending on features
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Model 2: Multinomial Naïve Bayes
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Option 1: Integer vector (word IDs)

t = [x1, x2, . . . , xM ] where xm � {1, . . . , K} a word id.

Support:

Generative Story:
for i � {1, . . . , N}:

y(i) � Bernoulli(�)

for j � {1, . . . , Mi}:

x(i)
j � Multinomial(�y(i) , 1)

Model:
p�,�(x, y) = p�(y)

K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
Mi�

j=1

�y,xj



Model 3: Gaussian Naïve Bayes
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Model: Product of prior and the event model

Support: 

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

t � RK

Gaussian Naive Bayes assumes that p(xk|y) is given by
a Normal distribution.



Model 4: Multiclass Naïve Bayes
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Model:

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

Now, y � Multinomial(�, 1) and we have a sepa-
rate conditional distribution p(xk|y) for each of the C
classes.

The only change is that we permit y to range over C
classes.



Model: Product of prior and the event model

Naïve Bayes Model
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Generic

P (s, Y ) = P (Y )
K�

k=1

P (Xk|Y )

Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y)we condition on the data with the corresponding 
class.Classification: Find the class that maximizes the posterior

ŷ = �`;K�t
y

p(y|t)



Naïve Bayes Model
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Generic

Classification:

ŷ = �`;K�t
y

p(y|t) (posterior)

= �`;K�t
y

p(t|y)p(y)

p(x)
(by Bayes’ rule)

= �`;K�t
y

p(t|y)p(y)



VISUALIZING GAUSSIAN NAÏVE 
BAYES
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Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Iris Data (2 classes)

Figure from William Cohen



Iris Data (2 classes)

Figure from William Cohen



Iris Data (2 classes)
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Naïve 
Bayes has 
a linear
decision 
boundary 
if variance 
(sigma) is 
constant 
across 
classes



Iris Data (2 classes)

47variance = 1

Naïve 
Bayes has 
a linear
decision 
boundary 
if variance 
(sigma) is 
constant 
across 
classes



Iris Data (2 classes)

48variance learned for each class

Figures from William Cohen

z-axis is the difference of the posterior 
probabilities: p(y=1 | x) – p(y=0 | x)



Iris Data (2 classes)

49variance learned for each class

Naïve 
Bayes can 
have a 
nonlinear
decision 
boundary 
if variance 
(sigma) 
can vary 
across 
classes



Iris Data (3 classes)
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Iris Data (3 classes)

52variance = 1



Iris Data (3 classes)

53variance learned for each class



One Pocket
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One Pocket

55variance learned for each class



One Pocket

56variance learned for each class

Why doesn’t 
Naïve Bayes 

learn a better 
decision 

boundary?



DISCRIMINATIVE AND 
GENERATIVE CLASSIFIERS
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Generative vs. Discriminative
• Generative Classifiers:
– Example: Naïve Bayes
– Define a joint model of the observations x and the 

labels y:
– Learning maximizes (joint) likelihood
– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression
– Directly model the conditional:  
– Learning maximizes conditional likelihood
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p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative
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Generative vs. Discriminative

Whiteboard
– MAP Estimation and Regularization

60



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)
[Assume that we are learning from a finite 
training dataset]
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If model assumptions are correct: Naive Bayes is a more 
efficient learner (requires fewer samples) than Logistic 
Regression

If model assumptions are incorrect: Logistic Regression has 
lower asymptotic error, and does better than Naïve Bayes



solid: NB 
dashed: LR

62
Slide courtesy of William Cohen



Naïve Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ….” Andrew Ng 
and Michael Jordan, NIPS 2001.
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solid: NB 
dashed: LR

Slide courtesy of William Cohen



Naïve Bayes vs. Logistic Reg.

Features
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Naïve Bayes: 
Features x are assumed to be conditionally independent 
given y. (i.e. Naïve Bayes Assumption)

Logistic Regression: 
No assumptions are made about the form of the features x.  
They can be dependent and correlated in any fashion. 



Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)
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Bernoulli Naïve Bayes: 
Parameters are probabilities à Beta prior (usually) pushes 
probabilities away from zero / one extremes

Logistic Regression: 
Parameters are not probabilities à Gaussian prior 
encourages parameters to be close to zero 

(effectively pushes the probabilities away from zero / one 
extremes)



Generative vs. Discriminative

Learning (Parameter Estimation)

66

Naïve Bayes: 
Parameters are decoupled à Closed form solution for MLE

Logistic Regression: 
Parameters are coupled à No closed form solution – must 
use iterative optimization techniques instead



Naïve Bayes vs. Logistic Regression
Question:
You just started working at a 
new company that manufactures  
comically large pennies. Your 
manager asks you to build a 
binary classifier that takes an 
image of a penny (on the factory 
assembly line) and predicts 
whether or not it has a defect. 

What follow-up questions would 
you pose to your manager in 
order to decide between using a 
Naïve Bayes classifier and a 
Logistic Regression classifier?
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Answer:



Summary

1. Naïve Bayes provides a framework for 
generative modeling

2. Choose p(xm | y) appropriate to the data
(e.g. Bernoulli for binary features, 
Gaussian for continuous features)

3. Train by MLE or MAP
4. Classify by maximizing the posterior

68



Learning Objectives
Naïve Bayes

You should be able to…
1. Write the generative story for Naive Bayes
2. Create a new Naive Bayes classifier using your favorite probability distribution 

as the event model
3. Apply the principle of maximum likelihood estimation (MLE) to learn the 

parameters of Bernoulli Naive Bayes
4. Motivate the need for MAP estimation through the deficiencies of MLE
5. Apply the principle of maximum a posteriori (MAP) estimation to learn the 

parameters of Bernoulli Naive Bayes
6. Select a suitable prior for a model parameter
7. Describe the tradeoffs of generative vs. discriminative models
8. Implement Bernoulli Naives Bayes
9. Employ the method of Lagrange multipliers to find the MLE parameters of 

Multinomial Naive Bayes
10. Describe how the variance affects whether a Gaussian Naive Bayes model will 

have a linear or nonlinear decision boundary
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THE BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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ML Big Picture

Whiteboard
– Decision Rules / Models 
– Objective Functions 
– Regularization 
– Optimization
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