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Reminders

 Homework 6: Learning Theory | Generative Models
— Out: Fri, Mar. 18
— Due: Fri, Mar. 25 at 11:59pm

e Exam 2 (Thu, Mar 3rd)
— Thu, Mar. 31, 6:30pm - 8:30pm
* Practice for Exam 2

— Practice problems released on course website
* Out: Fri, Mar. 25
— Mock Exam 2

* Out: Fri, Mar. 25
* Due Wed, Mar. 30 at 11:59pm




EXAM 2 LOGISTICS



Exam 2

* Time /Location
— Time: Thu, Mar. 31, 6:30pm - 8:30pm
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room. Please watch
Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 8 — Lecture 17
— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back,
handwritten with pen/pencil or tablet)



Topics for Exam 1

 Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important COnCEPtS — Linear Regression

— Overfitting
— Experimental Design



Topics for Exam 2

* (lassification * Learning Theory
— Binary Logistic — PAC Learning
Regression  Generative Models
* Important Concepts — Generative vs.
— Stochastic Gradient Discriminative
Descent — MLE | MAP
— Regularization — Naive Bayes

— Feature Engineering

* Feature Learning
— Neural Networks * Regression
— Basic NN Architectures — Linear Regression
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(z;,v:),7 = 1,...,n} where z; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a parametric model of the form

1
1+ exp(—wTz)’

p(y = 1|z w) =

The conditional log likelihood of the training set is

l(w) = Zyi log p(ys, |zi; w) + (1 — i) log(1 — p(yi, |75 w)),
i=1

and the gradient is

n

Ve(w) = (yi — pyilwi; w))z:.

=1

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, z € {0,1}¢ C R,
where feature x; is rare and happens to appear in the training set with only label 1.
What is w,? Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of w?



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"¥", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.
(b) Decrease the training data size.

(¢) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.
(e) Train on a combination of D™ and D' and test on D

(f) Conclude that Machine Learning does not work.



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"¥", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?

2 2
u,:J ”””””” Test Error L,L:J Test Error
] m -
1] o L
= = -

Train Error Train Error

_'-'_‘——\_._\_‘_‘_‘_-_-_‘-
Model Complexity Model Complexity

(a) (b)



Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or F: It is possible to label 4 points in R? in all possible 2* ways via linear
separators in R?.

(d) [3 pts.] T or F: The VC dimension of a hypothesis space with infinite size is also infinite.



Sample Questions




Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X, ..., X,, ~ Bernoulli(#).
We are going to derive the MLE for 6. Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0)=0%(1—6)"*.

(a) [2 pts.] Derive the likelihood, L(0; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: 0 = — (3" | X;).
n



Sample Questions

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.



Sample Questions




THE BIG PICTURE



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Izalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
el ea ordinal Ordinal Classification ] g =
*  reinforcement learning real Regression o W Y.Y
°  activelearning ordering Ranking e 5 < O
. imitation learning . . _ S c 8 0
. domain adaptation multiple discrete  Structured Prediction =Ry DC:D
«  online learning multiple continuous (e.g. dynamical systems) o S %C«_S
B e both discrete & (e.g. mixed graphical models) | & = as.0 5
. recommender systems ¢ Qo <12 o
«  feature learning cont. <X Z>wn
0 manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
¢ ensemble learning Systems: . . -
. i isi : Which are the ideas driving

distant supervision i i 5] rrae Al
«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
effective? * inductive bias
Theoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
TP 3. Training (optimization/ . enerative vs. discriminative

L probabilistic el

. . : * deep nets, graphical models
O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning

. 5. (Blind) Assessment ontest ~ *  distant rewards

O ML as optimization data



ML Big Picture

Whiteboard
— Decision Rules [ Models
— Objective Functions
— Regularization
— Optimization



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X = (X5, X5 ..., Xp)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X5, X5 ..., Xp)
— Predict a structure: Yy=05Y2» -0 V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OIS,
Sample 4: ‘ ‘ ‘ ‘ ‘




Dataset for Supervised
Handwriting Recognition
Data: D = {z™ ymWN_

N JOXOROIOXOI JOROIOMNEE

lafel<lrlelc)7]e] e
90000000 I
1AL |CR
90000000 I
IIIIEIEI e

Figures from (Chatzis & Demiris, 201



Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z\™, ym

QQQQQQQQQQ oy

Figures from (Jansen & Niyogi, 2013)



Application:

Word Alignment / Phrase Extraction

* Variables (boolean):

— For each (Chinese phrase,
English phrase) pair,
are they linked?

* Interactions:

— Word fertilities

— Few “jumps” (discontinuities)

— Syntactic reorderings

— “ITG contraint” on alignment

— Phrases are disjoint (?)

(Burkett & Klein, 2012)
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Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by w
representative and their
vote B
— Pairs of representatives |
and their local context B




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.

{ N ot Sy
P A7 Y

32



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
l[atent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

34



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

35



Structured Prediction




Machine Learning

37



Machine Learning
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BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

ALB‘C’ Later we will also
write: I<4, {C}, B>



HIDDEN MARKOV MODEL (HMM)



From Mixture Model to HMM

T
“Naive Bayes””: H (X¢[Ye)p

e Eé 7

T
HP thYt Hp Y:|Y; 1)
t:1




Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

45
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,8,5,0,C,2m,3m, 18m,9m,27m) =  (.8*.2*.1*.03%...)
O .8 O .8
S | .1 S | .1
C .1 C| .1

® c

% | 1min
v | 2min

3min
% | 1min

W

© | [w | 3min
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m,3m, 18m,9m,27m) = (.8 *.08 * .2%.7% 03 %...)

3 O/ S|C O S|C
Q- O |.9.08.02 0|.9.08.02
S | .1
S .2.7 1 S|.2|.7].1
2 Cl9/ 0] C .9/0]4
: 10 ©
S| 5| 5 S8 .8
E| B & E| & &
(=) (om
A(.21(.3 Ol .1].2].3
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From Mixture Model to HMM

T
“Naive Bayes””: H (X¢[Ye)p

e Eé 7

T
HP thYt Hp Y:|Y; 1)
t:1




From Mixture Model to HMM
(= @ © @ (S
“Naive Bayes””: 1:[ (X¢[Ye)p

. ; .

P(X,Y|Yo) = || P(X:|Y2)p(Y:|Yi1)
t=1




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die N times. That is, we have data

D= {x(i)}f]iil

where () € {1,..., M} and (¥ ~ Categorical(¢).

2. A random variable is Categorical written X ~ Categorical(¢)
iff
P(X =2) =p(x;$) = ¢o

where x € {1,..., M} and 2%21 ¢m = 1. The log-likelihood
of the data becomes:

N M
U(p) = Zlog Py St Z ¢m =1
=1 m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
HMLE _ No—m _ Di=1 I(z”) = m)

N N

60



Hidden Markov Model
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

—————————

_________

_Q/«-_[‘-;_- D - i(;m/ 7("))%':. %= [x,.. Y-r]'r

AL IR

2459)- E—XJP(X“//“”ABQ
%_Pm)(\/,)c)(z P(/tyt ,B§ (?va @ a) ):(

m+ \ -I-rems-l-\w\ ew““ o

MLE:

Z,% C = aramex Q(ABC)

ABC

= A jwme. /[ ")(\/1‘(‘3 3
Com solve n

A = argMax o ‘ ;}orM’
B '5 kZ_I Z_l,l P(/t Ve ) ) tﬁ \/,'c\c\s.,_
A = Arjmax k%_l 7;,'(?)? }y ), A) /
CL= #(YI = ) )fl,k
N
A _
B = (é =k “*‘M 1%5) ¥t
‘E(\‘ﬂq-fffb




Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = A, k, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k

Assumption: yo = START f G

Generative Story:

For notational
convenience, we fold the

Y;f o~ MUItinomial(BYt_l) Vit initial probabilities C into
. . the transition matrix B by
Xy~ MUltanmlal(Ayt) vVt our assumption.

MO



Hidden Markov Model




Supervised Learning for HMMs

Learning an : [(3@ W
HMM D" X / )jl. (

decomposes Lidiod - /(4 B> E, bos ?(7‘(‘)'}/

into solving two
independent
?Vlixtul:i‘e l\/\ode)ls [%— \"7? 7¢|/‘ L )+ > f(xé} ,A>I

L =1

R T Apwax Lg [%— \?? 7’* '/‘ ")}
9 o ool o clowd B lu}l
o % - 2 (el - 00
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Ayf £ (xe 2k <1 §35)
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