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Reminders

* Exam 2 (Thu, Mar 3rd)
— Thu, Mar. 31, 6:30pm — 8:30pm
* Practice for Exam 2

— Practice problems released on course website
* Out: Fri, Mar. 25
— Mock Exam 2

* Out: Fri, Mar. 25
* Due Wed, Mar. 30 at 11:59pm




TO HMMS AND BEYOND...



Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(", x(), ..., x(N)}1
where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm

Since we don’t observe y, we define the marginal probability:

po(x) = )  po(x,y)

yeY

The log-likelihood of the data is thus:

N .
£(0) = log Hpg (x(z))

N
=D log ) pe(x?,y)
i=1

yey




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
* Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA
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Slide from William Cohen



Higher-order HMMs
 15-order HMM (i.e. bigram HMM)

REER T

« 2"d-order HMM (i.e. trlgram HI\/\I\/\)




Higher-order HMMs
 15-order HMM (i.e. bigram HMM)
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Hidden HMM (i.e. trlgram HIVHV\)
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BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
¢

yj wouldn't work correctly
> with a 'loopy" (cyclic) graph



INFERENCE FOR HMMS



Inference

Question:
True or False: The joint probability of the observations

and the hidden states in an HMM is given by:

T—1
H Ayt Tt H Byt,yt+1
t=1

PX=x,Y=y)

y1

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = A, k, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference

Question:

True or False: The probability of the observations
inan HMM is given by:

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = A, k, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



THE SEARCH SPACE FOR
FORWARD-BACKWARD



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OIS,
Sample 4: ‘ ‘ ‘ ‘ ‘
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Example: HMM for POS Tagging

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) — (.3 *8* 0% 5 ® )
v n|p|d v nip d
v ia|.4(2(3 |v|a].4].2].3

2.

3

<START>
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Example: HMM for POS Tagging

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Inference for HMMs

Whiteboard

— Brute Force Evaluation
— Forward-backward search space



HOW IS EFFICIENT COMPUTATION
EVEN POSSIBLE?



How is efficient computation even
possible?

* The short answer is dynamic programming!

* The key ideais this:

— We first come up with a recursive definition for the
quantity we want to compute

— We then observe that many of the recursive
intermediate terms are reused across timesteps and
tags

— We then perform bottom-up dynamic programming by

running the recursion in reverse, storing the
intermediate quantities along the way!

* This enables us to search the exponentially large
space in polynomial time!

40



Derivation of Forward Algorithm

Definition: D(,E(lc,) 2 ]Q(x,,,,.,xt,ytzk)

Derivation: Herein vs9 : \/rn =5 )
O(T(Euo) = F(x,, s X7 ) Y= END) S\,.,,cWM\ oryr=EM0
1 ?(x"“"x’ l_ﬁ.') P(Zﬁ , +— 177 &f F Joiut
= ")(XTI }'ﬁr)f(x., oYy | V) r()'r) — by cond idip F My
- P(x,—ly,) POty esXray 1 Y9 — by b ok

= plely) %?(x.,m,xr_,,ym,yﬂ oy Uf F Mgl

= p (e ly) = POt YY) plyry) o= by &8 8 jot

= p (e lyy) % PO X ) Vi) plrrly) M by e 3 iy
- Y,.(XTI),,) %_' ?' (x,,...,xT-,,\/T_,)' P(y,|y7,) — 177 &8 3 jout

= F(X-r’/r) %l °(T-.|()'r-|) P(}’r’)’r-l) = /77 L of o<, (k)




THE FORWARD-BACKWARD
ALGORITHM



Inference for HMMs

Whiteboard

— Forward-backward algorithm
(edge weights version)



Forward-Backward Algorithm

—DQQ‘*L? o 4 (k) é’{’("'»"'/’(e;}'ﬁ’c‘) Asw yo=$T4?\T'
?é () 2 ',’(xl:n) g X1 \Yt =k\ )’TH‘ END
© Tuhilae oo (ST =1 o (k)=0 ¥4+ START

FTH(EN.D) =1 PTH(") =0 ¥k 7END
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Forward-Backward Algorithm
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