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Reminders

• Exam 2 (Thu, Mar 3rd)
– Thu, Mar. 31, 6:30pm – 8:30pm

• Practice for Exam 2
– Practice problems released on course website
• Out: Fri, Mar. 25

– Mock Exam 2
• Out: Fri, Mar. 25
• Due Wed, Mar. 30 at 11:59pm
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TO HMMS AND BEYOND…
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Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm
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Beyond the scope of 

today’s lecture!



HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.
– McCallum:  multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Higher-order HMMs
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BACKGROUND: MESSAGE PASSING
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Great Ideas in ML: Message Passing
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Count the soldiers
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing

7 here
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(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing

7 here
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Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

wouldn't work correctly

with a 'loopy' (cyclic) graph
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INFERENCE FOR HMMS
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Inference
Question:
True or False: The joint probability of the observations 
and the hidden states in an HMM is given by:

29

Recall:



Inference
Question:
True or False: The probability of the observations 
in an HMM is given by:
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Recall:



Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 

sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
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THE SEARCH SPACE FOR 
FORWARD-BACKWARD
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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time flies like an arrow

n v p d n<START>

Example: HMM for POS Tagging
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.

v n p d
v .1 .4 .2 .3
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p .2 .3 .2 .3
d .2 .8 0 0
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p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Example: HMM for POS Tagging



Inference for HMMs

Whiteboard
– Brute Force Evaluation
– Forward-backward search space
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HOW IS EFFICIENT COMPUTATION 
EVEN POSSIBLE?
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How is efficient computation even 
possible?

• The short answer is dynamic programming!

• The key idea is this:
– We first come up with a recursive definition for the 

quantity we want to compute

– We then observe that many of the recursive

intermediate terms are reused across timesteps and 

tags

– We then perform bottom-up dynamic programming by

running the recursion in reverse, storing the 
intermediate quantities along the way!

• This enables us to search the exponentially large
space in polynomial time!
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Derivation of Forward Algorithm
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Derivation:

Definition:



THE FORWARD-BACKWARD 
ALGORITHM
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Inference for HMMs

Whiteboard
– Forward-backward algorithm 

(edge weights version)
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Forward-Backward Algorithm
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Forward-Backward Algorithm
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O(K) O(K2T)

Brute force 
algorithm 
would be 

O(KT)


