

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Machine Learning as Function Approximation

Matt Gormley Lecture 2 Jan. 24, 2022

Q: Should I go outside today?

A: Absolutely, yes! Unless it's this Thursday morning...

Q: In Lecture 1, why did we use the term **experience** instead of just **data**?

A: Because our concern isn't just the data itself, but also where the data comes from (e.g. an agent interacting with the world vs. knowledge from a book).

As well, the word experience better aligns with the notion of what humans require in order to learn.

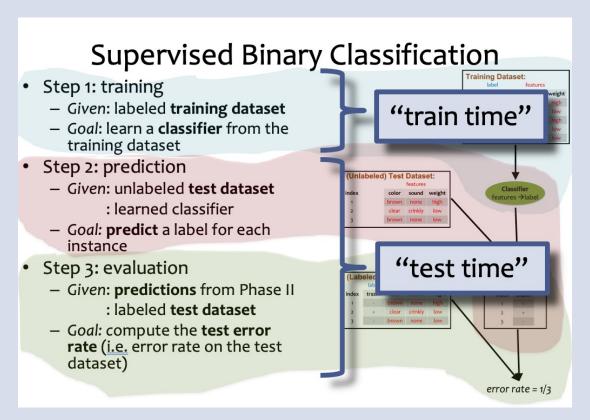
Q: Did your definition of error rate include a typo?

A: Oops, yes! My mistake.

Def: error rate is the proportion of test examples on which we predicted the wrong label

With the correct definition, we can now talk about:

- Def: training error rate is the error rate on the training data
- Def: test error rate is the error rate on the test data


Q: What does the technical term "point" refer to?

A: Def: a **point** is a collection of **features** (aka. attributes)

Def: an example contains a label (aka. class) and a point

Q: What is "test time"?

A: Good question!

Q: Can we have the handwritten notes from lectures?

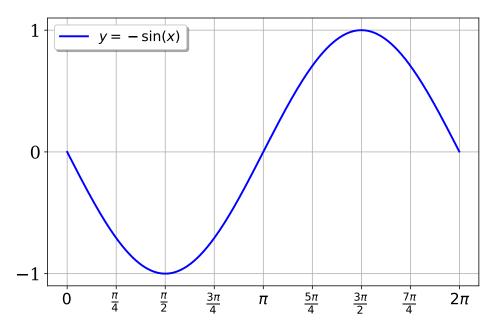
A: Okay fine...

https://1drv.ms/u/s!Aqk9RupCw3gqixxHH34qLcj5uJTQ?e=E9OYu7

... but just be warned that lots of education research suggests that taking your own notes is the best way to learn!

Reminders

- Homework 1: Background
 - Out: Wed, Jan 19 (1st lecture)
 - Due: Wed, Jan 26 at 11:59pm
 - Two parts:
 - 1. written part to Gradescope
 - 2. programming part to Gradescope
 - unique policy for this assignment:
 - 1. two submissions for written (see writeup for details)
 - 2. unlimited submissions for programming (i.e. keep submitting until you get 100%)
 - unique policy for this assignment: we will grant (essentially) any and all extension requests
- Please set your name in Gather. Town to be identical to your name in OHQueue.


Big Ideas

- 1. How to formalize a learning problem
- How to learn an expert system (i.e. Decision Tree)
- 3. Importance of inductive bias for generalization
- 4. Overfitting

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- 2. You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- You only need to evaluate it for x in [0, 2*pi]

SUPERVISED MACHINE LEARNING

Medical Diagnosis

Setting:

- Doctor must decide whether or not patient is sick
- Looks at attributes of a patient to make a medical diagnosis
- (Prescribes treatment if diagnosis is positive)
- Key problem area for Machine Learning
- Potential to reshape health care

Medical Diagnosis

Interview Transcript

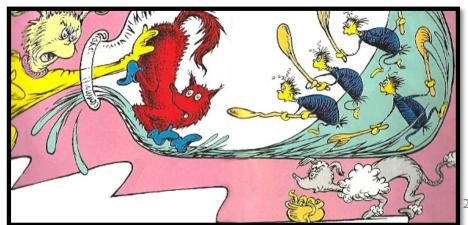
Date: Jan. 15, 2022

Parties: Matt Gormley and Doctor S.

Topic: Medical decision making

Medical Diagnosis

Interview Transcript


Date: Jan. 15, 2022

Parties: Matt Gormley and Doctor S.

Topic: Medical decision making

- Matt: Welcome. Thanks for interviewing with me today.
- Dr. S: Interviewing...?
- Matt: Yes. For the record, what type of doctor are you?
- Dr. S: Who said I'm a doctor?
- Matt: I thought when we set up this interview you said—
- Dr. S: I'm a preschooler.
- Matt: Good enough. Today, I'd like to learn how you would determine whether or not your little brother is allergic to cats given his symptoms.
- Dr. S: He's not allergic.
- Matt: We haven't started yet. Now, suppose he is sneezing. Does he have allergies to cats?
- Dr. S: Well, we don't even have a cat, so that doesn't make any sense.
- Matt: What if he is itchy; Does he have allergies?
- Dr. S: No, that's just a mosquito.
- [Editor's note: preschoolers unilaterally agree that itchiness is always caused by mosquitos, regardless of whether mosquitos were/are present.]

- Matt: What if he's both sneezing and itchy?
- Dr. S: Then he's allergic.
- Matt: Got it. What if your little brother is sneezing and itchy, plus he's a doctor.
- Dr. S: Then, thumbs down, he's not allergic.
- Matt: How do you know?
- Dr. S: Doctors don't get allergies.
- Matt: What if he is not sneezing, but is itchy, and he is a fox....
- Matt: ... and the fox is in the bottle where the tweetle beetles battle with their paddles in a puddle on a noodle-eating poodle.
- Dr. S: Then he is must be a tweetle beetle noodle poodle bottled paddled muddled duddled fuddled wuddled fox in socks, sir. That means he's definitely allergic.
- Matt: Got it. Can I use this conversation in my lecture?
- Dr. S: Yes

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	У	X_1	X ₂	x_3	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Υ	N	N	N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	у	X_1	X_2	X_3	X_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Υ	N	N
3	+	Y	Y	N	N
4	-	Υ	N	Υ	Υ
5	+	N	Υ	Υ	N

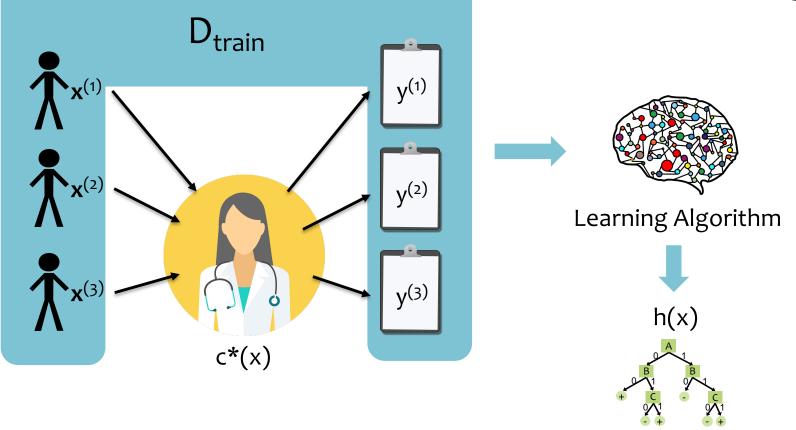
Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	у	X_1	X_2	X_3	X ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	$X_2^{(1)} N$	$x_3^{(1)} N$	x ₄ ⁽¹⁾ N
2	y ⁽²⁾ -	$X_1^{(2)} N$	$X_2^{(2)} Y$	$X_3^{(2)} N$	$X_4^{(2)} N$
3	y ⁽³⁾ +	X ₁ ⁽³⁾ Y	$X_2^{(3)} Y$	$x_3^{(3)} N$	$x_4^{(3)}N$
4	y ⁽⁴⁾ -	$X_1^{(3)} Y$	$X_2^{(3)} N$	$x_3^{(3)} Y$	$X_4^{(3)}Y$
5	y ⁽⁵⁾ +	X ₁ ⁽⁴⁾ N	x ₂ ⁽⁴⁾ Y	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_1, ..., x_M$

	У	X ₁	X ₂	x ₃	X ₄	
i	allergic?	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	$x_2^{(1)} N$	$x_3^{(1)} N$	x ₄ ⁽¹⁾ N	X ⁽¹⁾
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	$X_2^{(2)} Y$	$x_3^{(2)} N$	x ₄ ⁽²⁾ N	X ⁽²⁾
3	y ⁽³⁾ +	Χ ₁ ⁽³⁾ Υ	X ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N	X ⁽³⁾
4	y ⁽⁴⁾ -	Χ ₁ ⁽³⁾ Υ	$X_2^{(3)} N$	x ₃ ⁽³⁾ Y	x ₄ ⁽³⁾ Y	X ⁽⁴⁾
5	y ⁽⁵⁾ +	x ₁ ⁽⁴⁾ N	x ₂ ⁽⁴⁾ Y	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ N	X ⁽⁵⁾

N = 5 training examples


M = 4 attributes

ML as Function Approximation

Chalkboard

- ML as Function Approximation
 - Problem setting
 - Input space
 - Output space
 - Unknown target function
 - Hypothesis space
 - Training examples
 - Goal of Learning

Supervised Machine Learning

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_1, ..., x_M$

	y	X ₁	X_2	X_3	X_4	
i	allergic? _{c*}	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ - C*	x ₁ ⁽¹⁾ Y	$x_2^{(1)} N$	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N	X ⁽¹⁾
2	y ⁽²⁾ - *	X ₁ ⁽²⁾ N	$X_2^{(2)} Y$	$x_3^{(2)} N$	x ₄ ⁽²⁾ N	X ⁽²⁾
3	y(3) ‡	X ₁ ⁽³⁾ Y	X ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N	X ⁽³⁾
4	y(4) - **	Χ ₁ ⁽³⁾ Υ	$X_2^{(3)} N$	x ₃ ⁽³⁾ Y	x ₄ ⁽³⁾ Y	X ⁽⁴⁾
5	y(5)	x ₁ ⁽⁴⁾ N	x ₂ ⁽⁴⁾ Y	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ N	X ⁽⁵⁾

N = 5 training examples M = 4 attributes

Example hypothesis function:

$$h(x) = \int + if \text{ sneezing} = Y$$

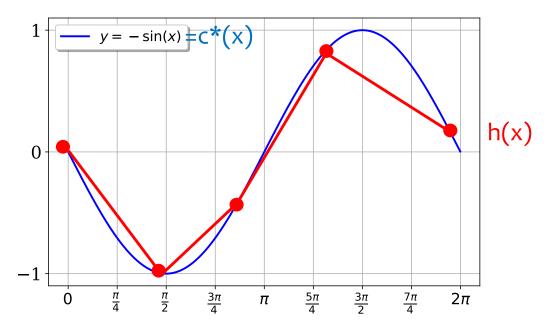
- otherwise

Supervised Machine Learning

Problem Setting

- Set of possible inputs, $x \in \mathcal{X}$ (all possible patients)
- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
- Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain)
- Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees)
- Learner is given N training examples D = $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = c^*(\mathbf{x}^{(i)})$ (history of patients and their diagnoses)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data

Supervised Machine Learning


- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unique with the doctor's braining and the doctor's braini
 - Set, \mathcal{H} , of candid (all possible deciments) consider:
- Learner is given N $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(3)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(2)}$
- Learner produces that best approxii c*(x) on the traini

Two important settings we'll consider:

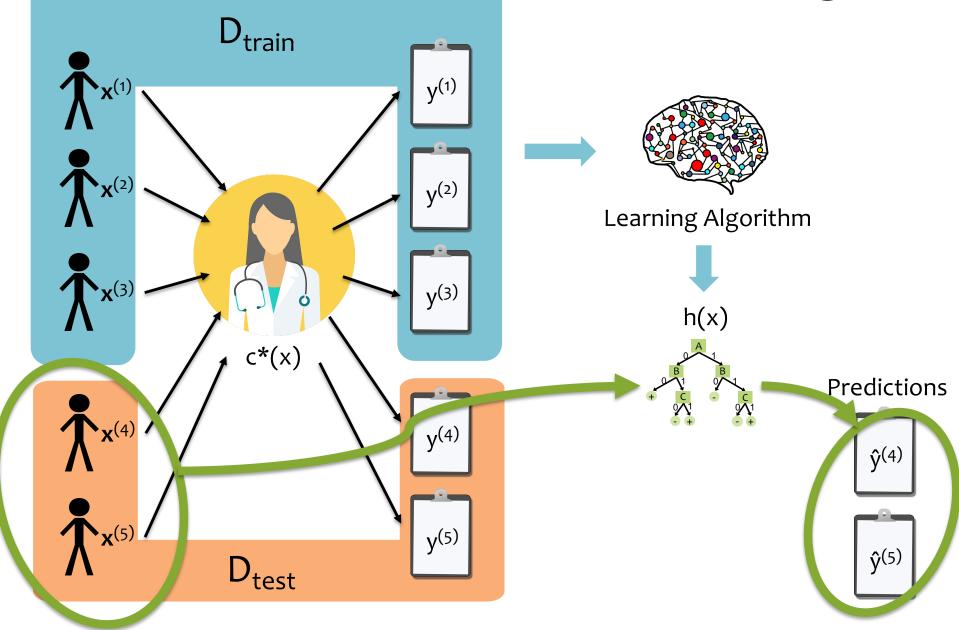
- Classification: the possible outputs are discrete
- 2. Regression: the possible outputs are real-valued

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.

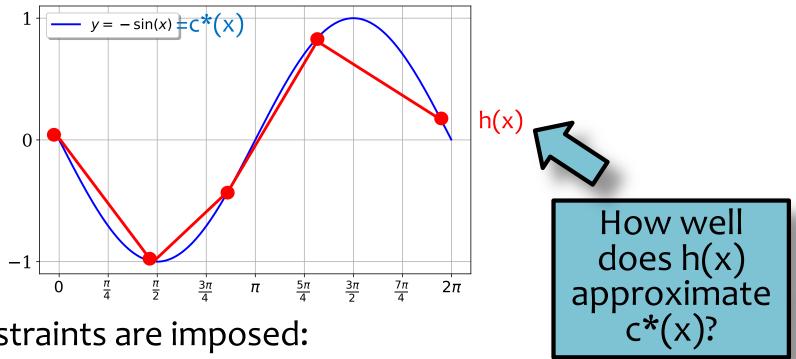
A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- 2. You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- You only need to evaluate it for x in [0, 2*pi]


Supervised Machine Learning

Problem Setting

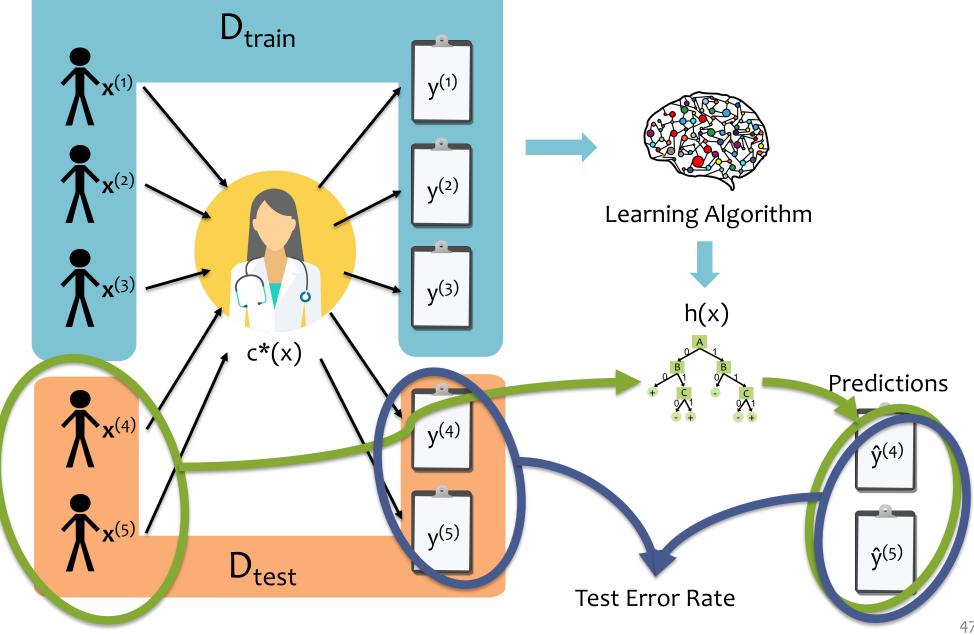
- Set of possible inputs, $x \in \mathcal{X}$ (all values in [0, 2*pi])
- Set of possible outputs, $y \in \mathcal{Y}$ (all values in [-1,1])
- Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ ($c^*(x) = \sin(x)$)
- Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible piecewise linear functions)
- Learner is given N training examples $D = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (true values of $\sin(\mathbf{x})$ for a few random x's)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data


EVALUATION OF MACHINE LEARNING ALGORITHM

Supervised Machine Learning

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.


- A few constraints are imposed:
 - You can't call any other trigonometric functions
 - You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
 - You only need to evaluate it for x in [0, 2*pi]

Evaluation of ML Algorithms

Chalkboard

- How to evaluate an ML algorithm?
- Definition: Loss function
 - Example for regression
 - Example for classification
- Definition: Error Rate
- Test dataset
- "Training" vs. "Testing"

Supervised Machine Learning

Error Rate

Consider a hypothesis h its...

... error rate over all training data:

... error rate over all test data:

... true error over all data:

error(h, D_{train}) error(h, D_{test}) error_{true}(h)

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

What is the training error (i.e. error rate on the training data) of the majority vote classifier on this dataset?

Choose one of: {0/8, 1/8, 2/8, ..., 8/8}

LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION

ML as Function Approximation

Chalkboard

- Algorithm o: Memorizer
- Aside: Does memorization = learning?
- Algorithm 1: Majority Vote

ML as Function Approximation

Chalkboard

- Algorithm 2: Decision Stump
- Algorithm 3 (preview): Decision Tree

Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| \ | \ | Fetal_Distress = 0: [334+,47-] .88+ .12-
 | \ | \ | \ | Birth_Weight >= 3349: [133+,36.4-] .78+
| \ | \ | \ Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```