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Reminders
• Exam 2 (Thu, Mar 3rd)
– Thu, Mar. 31, 6:30pm – 8:30pm

• Practice for Exam 2
– Practice problems released on course website

• Out: Fri, Mar. 25
– Mock Exam 2

• Out: Fri, Mar. 25
• Due Wed, Mar. 30 at 11:59pm

• Homework 7: HMMs
– Out: Fri, Apr. 1
– Due: Tue, Apr. 12 at 11:59pm
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EXAMPLE: FORWARD-BACKWARD 
ON THREE WORDS
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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X3X2X1
find preferred tags
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X3X2X1
find preferred tags

Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …
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Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
fi
nd
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v 3 5 3
n 4 5 2
a 0.1 0.2 0.1

v n a
v 1 6 4
n 8 4 0.1
a 0.1 8 0
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Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(STA
RT,v

)

B(v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)
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find preferred tags

Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product weight of one path

B(STA
RT,v

)

B (v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a
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X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n
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X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)∙β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)

n

v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide 
by Z=0.5 

to get 
marginal 

probs
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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O(K) O(K2T)

Brute force 
algorithm 
would be 

O(KT)



THE VITERBI ALGORITHM
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Inference for HMMs

Whiteboard
– Viterbi algorithm 

(edge weights version)
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Viterbi Algorithm
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O(K2T)

Brute force 
algorithm 
would be 

O(KT)



Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 32

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START



MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution
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h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 0 only if the two assignments 
are identical and 1 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

36

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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Bayes Nets Outline
• Motivation

– Structured Prediction
• Background

– Conditional Independence
– Chain Rule of Probability

• Directed Graphical Models
– Writing Joint Distributions
– Definition: Bayesian Network
– Qualitative Specification
– Quantitative Specification
– Familiar Models as Bayes Nets

• Conditional Independence in Bayes Nets
– Three case studies
– D-separation
– Markov blanket

• Learning
– Fully Observed Bayes Net
– (Partially Observed Bayes Net)

• Inference
– Background: Marginal Probability
– Sampling directly from the joint distribution
– Gibbs Sampling

39



DIRECTED GRAPHICAL MODELS
Bayesian Networks

40



Example: CMU Mission Control
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Bayesian Network

46

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

47

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))



Qualitative Specification
• Where does the qualitative specification 

come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a 

layered graph) 
– …

© Eric Xing @ CMU, 2006-2011 48



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

49© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification
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Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification
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Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are 
“observed”, i.e. their values are given
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Familiar Models as Bayesian 
Networks
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Question:
Match the model name to 
the corresponding Bayesian 
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian 

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

μ σ2

X

A B

C D

E F


