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Reminders

* Exam 2 (Thu, Mar 3rd)
— Thu, Mar. 31, 6:30pm - 8:30pm
* Practice for Exam 2

— Practice problems released on course website
* Out: Fri, Mar. 25

— Mock Exam 2
* Out: Fri, Mar. 25
* Due Wed, Mar. 30 at 11:59pm

e Homework 7: HMMs
— Out: Fri, Apr. 1
— Due: Tue, Apr. 12 at 11:59pm




EXAMPLE: FORWARD-BACKWARD
ON THREE WORDS



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb



Forward-Backward Algorithm

ANaAwa




Forward-Backward Algorithm
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* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment
 And what the 7 transition / emission factors think of it ...
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Forward-Backward Algorithm
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* Let’s show the possible values for each variable
* One possible assignment
 And what the 7 transition / emission factors think of it ...
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Viterbi Algorithm: Most Probable Assignment

<) A M A
ARG Ry
A (a,END)

A(pref., a)

* Sop(van)=(1/7) * product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

<) A v A
AR R
A (a,END)

A(pref., a)

* Sop(van)=(l/Z) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A E



Forward-Backward Algorithm: Finds Marginals

: LXK A
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A ©



Forward-Backward Algorithm: Finds Marginals

ﬁ\%\ﬁ A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/Z) * total weight of A 7



Forward-Backward Algorithm: Finds Marginals

: LXK A
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A @



Forward-Backward Algorithm: Finds Marginals

- = total we}ght of these

path prefixes

(found by dynamic programming: matrix-vector products) b



Forward-Backward Algorithm: Finds Marginals

Bam) = total weight of these
path suffixes
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(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

- = total We)i‘ght of these - = total weight of these

path prefixes (2 + b+ ¢) path suffixes (x +y +z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
4 Alpref, n)

total weight of o/l paths through A
= o) Apref,m) fy(m)
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Forward-Backward Algorithm: Finds Marginals

A ‘“belief that Y, = v”’
N / ‘“belief that ¥, =n"

N\ i /
A(pret., v)

total weight of A

= o,(v) A(pref,v) B,(v)
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Forward-Backward Algorithm: Finds Marginals

“belief that Y, =v”’

n N “belief that ¥, =n”

()

“belief that ¥, =3a”

sum=272
A(pret., a) (total weight

of all paths)
total weight of A
= o,(a) A(pref,a) PB,(a)
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Forward-Backward Algorithm
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THE VITERBI ALGORITHM



Inference for HMMs

Whiteboard

— Viterbi algorithm
(edge weights version)



Viterbi Algorithm
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Inference in HMMs

What is the computational complexity of
inference for HMMs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 32



MBR DECODING



Inference for HMMs

o
— /brrélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he(x)

arg}fnin <1j'ympg(-|a3) [6(@7 y)]
Yy

argmin Y pe(y | )((g,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning for an HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM

VIV
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Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

—  Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

— (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution
— Gibbs Sampling



DIRECTED GRAPHICAL MODELS



Example: CMU Mission Control

9 O. Pittsbuargh's NPR News Station

WESA

Pittsburgh's first mission control
center to land at CMU ahead of
2022 lunar rover launch

90.5 WESA | By Kiley Koscinski n n n =
Published March 29, 2022 at 4:44 PM EDT
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Bayesian Network

o o p(X1, Xo, X3, Xy, X5) =
g p(X5| X3)p(X4| X2, X3)

x) (%) p(X3)p(Xa2| X1)p(Xy)



Bayesian Network

Definition:

(x,)
@ @ P(Xy,...,X7) = HP(Xt | parents(X;))

t=1

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)



Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

0.75

bO

0.33

0.25

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’bO a’b’ a'bo a'b’
c? 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
c? c’
0.3 |05
07 |0.5

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
A-N(Us Z)  B~N(ip, ) P(a)P(b)P(c|a,b)P(d]c)

C~N(A+B, Z,)

PO/ &)

‘ D~N(ug+C, Zg)
D

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

P(a,b,c.d) =

a® |0.75 b |0.33 P(a)P(b)P(c|a,b)P(d|c)

a' [0.25 b’ 0.67

C~N(A+B, Z,)

‘ D~N(uq+C, Z4)

© Eric Xing @ CMU, 2006-2011



Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian
Networks

Question:

Match the model name to
the corresponding Bayesian
Network

1. Logistic Regression
Linear Regression
Bernoulli Naive Bayes
Gaussian Naive Bayes
1D Gaussian

R

Answer:




