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Reminders

* Homework 7: HMMs
— Out: Fri, Apr. 1
— Due: Tue, Apr. 12 at 11:59pm




GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a probability

distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

T
+ This follows from P(X1, ..., Xr) = | | P(X; | parents(X;))

t=1
T

=] P(X¢ | X1, Xio1)
t=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...
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Whiteboard

Proof of (The other two
conditional cases can be

independence @ e Z‘;gi\lf;’,”)ius’c as




The “Burglar Alarm” example

* Your house has a twitchy burglar
HITIOUSE Witeny v & Burglar FEarthquake
alarm that is also sometimes
triggered by earthquakes.

e Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



The “Burglar Alarm” example

* After you get this phone call,

suppose you learn that there was a @”’”gl‘” Earthqu@
medium-sized earthquake in your
neighborhood. Oh, whew! Probably Alarm

not a burglar after all.

 Earthquake “explains away” the
hypothetical burglar. @one C@

e But then it must not be the case
that

Burglar 1L Earthquake | PhoneCall
even though

Burglar 1. Earthquake



Markov boundary

Def: the co-parents of a node
are the parents of its children

Def: the Markov boundary of a
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.



Markov boundary

Def: the co-parents of a node Example: The Markov
are the parents of its children boundary of Xj is

Def: the Markov boundary of a X5 Xgp X5 Xg Xo Xy0}

node is the set containing the @

node’s parents, children, and @ E @

co-parents.
@ @& o ®
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Markov boundary

Def: the co-parents of a node Example: The Markov
are the parents of its children boundary of X is

Def: the Markov boundary of a X5 Xgp X5 Xg Xo Xy0}

node is the set containing the @

node’s parents, children, and @ E @

CO-parents.
Parents

Theorem: a node is @ @ X, @

oy 0 . </
conditionally independent of Co-parents

every other node in the graph @ @
given its Markov boundary
Children @

X]Z



D-Separation

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

(variables that are observed) iff every path from X to Z is “blocked”.

A pathis “blocked” whenever:
1. 3Yonpaths.t.Y€EandYisa“common parent”

O -O@0 -0

2. 3dYonpaths.t.YEEandYisina“cascade”

3. 3Yon paths.t. {Y, descendants(Y)} € EandYisina ‘“v-structure”

O -O-0-O -0

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

13



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E
Definition #2:

Variables X and Z are d-separated given a set of evidence variables E iff there does
not exist a path between X and Z in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A 1 B|{D, E}

Original: Moral: Undirected:

T O T 0T 0T O mmm
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x|0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



Machine Learning




Machine Learning
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Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(X2|X1)p(X1)
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Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5]X3)p(X4| X2, X3)
&) (0 p(X3)p(Xa2| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(X17 X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small [ simple) independent p(X3)p(X2|X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal "
distributions for a Bayes Net? 0" = arginax 1og p(Xl, XQ, Xg, X4, X5)
0

@ = argznaxlogp(X5|X3,95) + log p(X4| X2, X3, 04)
+ log p(X3]03) + log p(X2| X1, 65)

@ @ + log p(X11601)

07 = argmaxlog p(X1|01)

01
@ @ 65 = argmaxlog p(Xo| X1, 05)

02

05 = argmaxlog p(X3|03)
03

0, = argmaxlog p(X4[ X2, X3, 04)
04

0: = argmaxlog p(X5| X3, 05)

05 23



Example: Tornado Alarms

1. Imagine that
you work at the
911 call center

in Dallas

2. You receive six

‘ calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you

conclude?

24



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Ima gl ne that
With Emergency Sirens, Officials Say you Wo rk at the
By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017 9 1 1 C a I I C e n t e r
—_— | in Dallas

N 2. You receive six
‘ calls informing
you that the
Emergency

Weather Sirens
are going off
3. What do you

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding 7
around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times C O n C u e °

Figure from https://[www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1. How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use

t,h,a~P(T,H,A|C=¢)
samples
5. How do we compute conditional marginal probabilities? p

P(H|C=c)=... <:'




Gibbs Sampling




Gibbs Sampling

2 (t+1)
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Gibbs Sampling




Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
yw y2) *eey yJ ~ P(Yn yzr *eey yJ I L STRASTRTTERY )

(Approximate) Solution:

— Initialize y,(©), y,(9), ..., y,(°) to arbitrary values
— Fort=1,2,...:

© Y0~y [y, e v, % X, X))
© V.~ p(y, |y, Y3(t): ey Y, Xy Xy 00, X))
° y3(t”) ~ P(y3 I Y1(t+1), yz(tﬂ)’ y4(t)’ ) yJ(t); Xy Xy eeey X) )

yJ(t+1) ~ p(yJ | y1(t+1)) yz(t+1)) cee yJ—1(t+1)) ASTRSTRITERS )

Properties:

— This will eventually yield samples from
p(Yv Yoreees Yy I Ky Xyy eeey X )

— But it might take a long time - just like other Markov Chain Monte Carlo
methods




Gibbs Sampling

Full conditionals
only need to
condition on the
Markov
boundary

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

o

10.
11.

Identify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendenciesin a
Bayesian network

Employ a Markov boundary to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



LEARNING PARADIGMS



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification

< Structured Prediction

y(®) is a vector



Learning Paradigms

Paradigm Data

Supervised D = {x®, yO}N x ~p*(-)andy = c*(+)
— Regression y®) e R

— Classification y@ e {l,...,K}

< Binary classification ~ y(®) ¢ {+1, -1}
< Structured Prediction y* is a vector

Unsupervised D = {X(i)}ﬁ\;l x ~ p*()



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

Semi-supervised

y(®) is a vector
D={xW}L,  x~p*()
D = {x®, y®} N U {xD} X2



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

y(®) is a vector

D={xW}, x~p*()

D = {x®,y®O}0 U {xD}

D — {(X(l),y(l)), (X(2), y(2)), (X(B), y(3))’ .



Learning Paradigms

Paradigm Data

Supervised D = {x(0 yON x ~p*(-)andy = c*(-)
— Regression y®) e R

— Classification y@ e {l,...,K}

— Binary classification y() e {+1, -1}

< Structured Prediction y* is a vector

Unsupervised D={xO}N .  x~p*)
Semi-supervised D = {x®,y®O}" U {x@D} %
Online D = {(xM,yM), (x,y@), (x®,y),.. }

Active Learning D = {x®}N  and can query y(¥) = ¢*(-) at a cost



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

Imitation Learning

y(®) is a vector

D= (xO1,  x~pt()

D = {x®,y®}1 U {xD}2

D = {(xM,yM) (x@ @) (x® 4@

D = {x®1}V . and can query y¥ = c*(-) at a cost
D = {(sW,aM), (52),a?), ..}



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D = {X(i)ay(i)}qj;\;l
y( e R

y@ e {l,...,K}
y e {+1,-1}
y(®) is a vector
D—x)Y,  x~p()

D = {x, @1 U (x0}¥e,

D = {(xM, M), (x@ 4@ (x® @),

D = {x®}V . and can query y¥ = c*(-) at a cost
D = {(sW,aM), (5),a?), ..}

D = {(sV),aV) 1) (52) 2 r(2)) 1

x ~p*(-)andy = c*()



REINFORCEMENT LEARNING



Source:

Reinforcement Learning

NORMAL

PERSON SCIENTIST

I WONDER IF
THAT HAPPENS EVERY

T GUESS T
SHOULDNT DO THAT

50


https://www.xkcd.com/242/

RL: Examples

297

*O9% 15z »
992

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://twitter.com/alphagomovie

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/
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AlphaGo

Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab channel=DeepMind




History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011
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What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed
effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011
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Example: Robot in a Room

START

UP

807%
10%
10%

 reward +1 at [4,3], -1 at [4,2]
e reward -0.04 for each step

© Eric Xing @ CMU, 2006-2011

actions: UP, DOWN, LEFT, RIGHT

move UP '
move LEFT

move RIGHT

58



Example: Robot in a Room

Question:

-)

=)

- |

L}

:

L}

-

- -

Is this policy optimal: yes
or no? Briefly justify your

dNSWer.

Answer: (Hint: both yes
and no are acceptable
answers, I’m interested in
your justification.)



Example: Robot in a Room

* Reward for each step -2

- =

1)
- =

AR 2R




* Reward for each step: -0.1

Example: Robot in a Room

- | =) |y |
1} + | -
= 1




The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011
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