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Reminders

• Homework 7: HMMs
– Out: Fri, Apr. 1
– Due: Tue, Apr. 12 at 11:59pm
– (Re-released handout on Monday.)

• Course Evaluation Poll
– in lieu of Exam 2: Exit Poll
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MARKOV DECISION PROCESSES
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RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 𝒮 ×𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠! 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠! 𝑠, 𝑎) = .1 if 𝛿 𝑠, 𝑎 = 𝑠′
0 otherwise

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋
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Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Process (MDP)

• For supervised learning the PAC learning 
framework provided assumptions about 
where our data came from:

• For reinforcement learning we assume our 
data comes from a Markov decision process 
(MDP)
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Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝwhere  𝑟$ = 𝑅 𝑠$, 𝑎$
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠! 𝑠$, 𝑎$)

3. Total reward is ∑$'#( 𝛾$𝑟$
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state 
only depends on the current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠
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RL: Objective Function
• Goal: Find a policy 𝜋 ∶ 𝒮 → 𝒜 for choosing “good” actions that 

maximize: 

𝔼 total reward = 𝔼 I
$'#

(

𝛾$𝑟$

• The above is called the 
“finite horizon expected future discounted reward”

• Can we define other notions of optimality?
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Exploration vs. Exploitation

Whiteboard
– Explore vs. Exploit Tradeoff
– Ex: k-Armed Bandits
– Ex: Traversing a Maze
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FIXED POINT ITERATION
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Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.
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1. Given objective function:
2. Compute derivative, set to 

zero (call this function f ).
3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓) ) ✓i = g(✓)

✓(t+1)
i = g(✓(t))



Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.
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1. Given objective function:
2. Compute derivative, set to 

zero (call this function f ).
3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2
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Fixed Point Iteration for Optimization
We can implement our 
example in a few lines of 
python.
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J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2
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Fixed Point Iteration for Optimization
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$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2
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VALUE ITERATION
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Definitions for Value Iteration

Whiteboard
– State trajectory
– Value function
– Bellman equations
– Optimal policy
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning
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