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Reminders

• Homework 8: Reinforcement Learning
– Out: Tue, Apr. 12
– Due: Thu, Apr. 21 at 11:59pm
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DIMENSIONALITY REDUCTION
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High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories 

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)
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Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)



High Dimension Data

Examples of high dimensional data:
– Customer Purchase Data
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Learning Representations
Dimensionality Reduction Algorithms: 
Powerful (often unsupervised) learning techniques for extracting 
hidden (potentially lower dimensional) structure from high 
dimensional datasets.

Examples: 
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix 
Factorization

Useful for:
• Visualization 
• More efficient use of resources (e.g., time, memory, 

communication)
• Statistical: fewer dimensions à better generalization
• Noise removal (improving data quality)
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Slide adapted from Nina Balcan



Shortcut Example
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https://www.youtube.com/watch?v=MlJN9pEfPfE

Photo from https://www.springcarnival.org/booth.shtml

https://www.youtube.com/watch?v=MlJN9pEfPfE


This section in one slide…
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1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error

2. consists of the K eigenvectors with 

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on: 

Run Singular Value 

Decomposition (SVD) to 

obtain all the eigenvectors. 

Keep just the top-K to form V. 

Play some tricks to keep 

things efficient.

5. An Example



DIMENSIONALITY REDUCTION BY 

RANDOM PROJECTION
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Random Projection

Whiteboard
– Random linear projection
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Johnson-Lindenstrauss Lemma
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http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

A: Even random projection enjoys some surprisingly impressive properties. 
In fact, a standard of the J-L lemma starts by assuming we have a random 
linear projection obtained by sampling each matrix entry from a 
Gaussian(0,1).

Q: But how could we ever hope to preserve any useful information 
by randomly projecting into a low-dimensional space?



DEFINITION OF PRINCIPAL 

COMPONENT ANALYSIS (PCA)
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Principal Component Analysis (PCA)

• Assumption: the data 
lies on a low K-
dimensional linear 
subspace 

• Goal: identify the axes 
of that subspace, and 
project each point 
onto hyperplane

• Algorithm: find the K 
eigenvectors with 
largest eigenvalue 
using classic matrix 
decomposition tools
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https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data



Data for PCA

We assume the data is centered
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Q: What if 
your data is 

not centered?

A: Subtract off the sample mean



Sample Covariance Matrix

The sample covariance matrix
is given by:
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Principal Component Analysis (PCA)
Linear Projection:
Given KxM matrix V, and Mx1 
vector x(i) we obtain the Kx1 
projection u(i) by:

u(i) = VTx(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the 
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1. 

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0. 
èthe K-dimensions in PCA are uncorrelated
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Vector Projection
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Principal Component Analysis (PCA)

Whiteboard
– Objective functions for PCA
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Maximizing the Variance
Quiz: Consider the two projections below

1. Which maximizes the variance?
2. Which minimizes the reconstruction error?
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Option A Option B



Background: 
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the 
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue λ (scalar) 
such that: 

Av = λv
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Av = λv

v

The linear transformation A is only 

stretching vector v.

That is, λv is a scalar multiple of v.



Principal Component Analysis (PCA)

Whiteboard
– PCA, Eigenvectors, and Eigenvalues
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PCA
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Equivalence of Maximizing 
Variance and Minimizing  

Reconstruction Error



PCA
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The First 
Principal 

Component



PCA: the First Principal Component
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Principal Component Analysis (PCA)
X X! v = λv , so v (the first PC) is the eigenvector of 

sample correlation/covariance matrix % %"

Sample variance of projection v"% %"v = &v"v = &
Thus, the eigenvalue ! denotes the amount of variability 
captured along that dimension (aka amount of energy along that 
dimension).

Eigenvalues !! ≥ !" ≥ !# ≥ ⋯

• The 1st PC $! is the the eigenvector of the sample covariance matrix % %$
associated with the largest eigenvalue 

• The 2nd PC $" is the the eigenvector of the sample covariance matrix 
% %$ associated with the second largest eigenvalue 

• And so on …

Slide from Nina Balcan



ALGORITHMS FOR PCA
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Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?
• Power iteration (aka. Von Mises iteration)
– finds each principal component one at a time in order 

• Singular Value Decomposition (SVD)
– finds all the principal components at once
– two options:

• Option A: run SVD on XTX
• Option B: run SVD on X 

(not obvious why Option B should work…)

• Stochastic Methods (approximate)
– very efficient for high dimensional datasets with lots of 

points
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Slide from Tom Mitchell
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Slide from Tom Mitchell
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Slide from Tom Mitchell



• For M original dimensions, sample covariance matrix is MxM, and has 
up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 
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• You do lose some information, but if the eigenvalues are small, you don’t lose 
much
– M dimensions in original data 

– calculate M eigenvectors and eigenvalues

– choose only the first D eigenvectors, based on their eigenvalues

– final data set has only D dimensions

Variance (%) = ratio of variance along 
given principal component to total 

variance of all principal components



PCA EXAMPLES
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Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to K components
2. Report percent of variance explained for K components
3. Then project back up to 25x25 image to visualize how much information was preserved



Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to 2 components

2. Plot the 2 dimensional points

3. Here we look at all ten digits 0 - 9



Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to 2 components

2. Plot the 2 dimensional points

3. Here we look at just four digits 0, 1, 2, 3



Learning Objectives
Dimensionality Reduction / PCA

You should be able to…
1. Define the sample mean, sample variance, and sample 

covariance of a vector-valued dataset
2. Identify examples of high dimensional data and common use 

cases for dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction 

error with maximization of variance
5. Given a set of principal components, project from high to low 

dimensional space and do the reverse to produce a 
reconstruction

6. Explain the connection between PCA, eigenvectors, 
eigenvalues, and covariance matrix

7. Use common methods in linear algebra to obtain the principal 
components
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