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Reminders

Homework 8: Reinforcement Learning
— Out: Tue, Apr. 12
— Due: Thu, Apr. 21 at 11:59pm
Homework 9: Learning Paradigms
— Out: Thu, Apr. 21
— Due: Wed, Apr. 27 at 11:59pm

— Can only use up to 2 grace/late days,
so we can return grades before final exam

Exam 3 Practice Problems

— Out: Wed, Apr. 27
Mock Exam 3

— Out: Wed, Apr. 27

— Due: Mon, May 2 at 11:59pm
Exam 3

— Tue, May 3 (9:30am - 11:30am)



Q&A

I’ve had such a great experience with this class, especially
with your excellent TAs: how can | be more like them and
contribute to future iterations of this class?

You can apply to be TA for this course next semester (S22)!

Details will be posted to Piazza this week.



CLUSTERING



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

data points.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

e C(luster news articles or web pages or search results by topic.
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e (luster protein sequences by function or genes according to expression

profile.
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Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

e And many many more applications....

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better’?
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OPTIMIZATION BACKGROUND



Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* |dea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.




Block Coordinate Descent

* Goal: minimize some objective

a*, f* = argmin J (&, E)
a8
* ldea: iteratively pick one block of variables (& or E)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.



Optimization Background

Whiteboard:

— Coordinate Descent
— Block Coordinate Descent



K-MEANS



K-Means

Whiteboard:
— K-means recipe
* K-means model parameters
* K-means objective function



K-Means Algorithm

unlabeled feature vectors
D = {x(", x(),..., x(N)]

cluster centers c = {c(),..., ¢V}

until convergence:
—foriin{1,..., N}
z() « index j of cluster center nearest to x()
— forjin {1,...,K}
cl) « mean of all points assigned to cluster j

19



K-Means

Whiteboard:

— Clustering: Inputs and Outputs

— Objective-based Clustering

— K-Means Objective

— Computational Complexity

— K-Means Algorithm [ Lloyd’s Method



K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means

26



Example: K-Means

~ Clustering with K-Means (k=3, iter=0)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=1)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=2)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=3)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=4)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=5)
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=0)
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=2)
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=3)
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=4)
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=5)

40



: K-Means

Example

~ Clustering with K-Means (k=2, iter=6)
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: K-Means

Example

~ Clustering with K-Means (k=2, iter=7)
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INITIALIZING K-MEANS



Initialization for K-Means

 [nitialization is crucial (how fast it converges, quality of solution output)

* Techniques commonly used in practice

* Random centers from the datapoints (repeat a few times)
* Furthest traversal

* K-means ++ (works well and has provable guarantees)

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Given a set of data points

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Select initial centers at random from amongst the data points

O

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Assign each point to its nearest center

™
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K-Means: Random Initialization

Recompute optimal centers given a fixed clustering

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Assign each point to its nearest center
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K-Means: Random Initialization

Recompute optimal centers given a fixed clustering

5
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K-Means: Random Initialization

Assign each point to its nearest center

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Recompute optimal centers given a fixed clustering

Good quality solution in this example

Slide courtesy of Nina Balcan



K-Means: Performance
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K-Means: Performance
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K-Means: Performance

Always converges but may converge to a local optimum that is
different from the global optimum, and in fact could be arbitrarily
worse in terms of its score.

Slide courtesy of Nina Balcan



K-Means: Performance

Local optimum: every point is assigned to its nearest center and

every center is the mean value of its points.

Slide courtesy of Nina Balcan



K-Means: Performance

Slide courtesy of Nina Balcan




K-Means: Performance

Can be arbitrarily worse than the optimum solution...

0 °

Slide courtesy of Nina Balcan
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K-Means: Performance

Can be arbitrarily worse than the optimum solution...

. :

Slide courtesy of Nina Balcan



K-Means: Performance
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O This bad performance, can happen
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even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan



K-Means: Performance

This bad performance, can happen
even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan



K-Means: Performance

* If we do random initialization, as k increases, it becomes more likely

we won'’t have perfectly picked one center per Gaussian in our

initialization (so K-Means will output a bad solution).

* For k equal-sized Gaussians,

Pr[each initial center is in a different Gaussian] = — ~

* Becomes unlikely as k gets large.

Slide courtesy of Nina Balcan



Another Initialization Idea:
Furthest Point Heuristic

Choose ¢4 arbitrarily (or at random).
* Forj=2,..,k

* Pick ¢j among datapoints x*,x%, ..., x™ that is farthest

from previously chosen ¢4, ¢y, ..., €j_1

Fixes the Gaussian problem. But it can be thrown off by

outliers....

Slide courtesy of Nina Balcan



Furthest point heuristic does well on previous

example
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Furthest point initialization heuristic sensitive

to outliers

Assume k=3

& O

(2,0) (3,0)

&(0)4)

Slide courtesy of Nina Balcan



Furthest point initialization heuristic sensitive

to outliers

Assume k=3

& (O,-1)

Slide courtesy of Nina Balcan



K-means++ Initialization: D% sampling [avo;]

* Interpolate between random and furthest point initialization

Let D(x) be the distance between a point x and its nearest center.
Chose the next center proportional to D%(x).

* Choose c¢q at random.

* Forj=2, ..,k

* Pick ¢j among x1,x2, ..., x™ according to the distribution

Pr(c; = x1) O@] “X ﬁ DZ(XI)

Theorem: K-means++ always attains an O(log k) approximation to optimal
k-means solution in expectation.

Running K-Means can only further improve the cost.

Slide courtesy of Nina Balcan



K-means++ Idea: D sampling

* Interpolate between random and furthest point initialization

*  Let D(x) be the distance between a point x and its nearest center.
Chose the next center proportional to D% (x).

* a = 0,random sampling

* a = OO, furtheSt pOint (Side note: it actually works well for k-center)

 a=2,k-means++
Side note: a = 1, works well for k-median

Slide courtesy of Nina Balcan



K-means++ handles the case on which furthest

point heuristic failed

@ O
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Q&A

In k-Means, since we don’t have a validation set, how do we
pick k?

Look at the training objective
function as a functionof k  J(c, 2)
and pick the value at the

“elbo” of the curve.

A

What if our random initialization for k-Means gives us poor
performance?

Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.

The objective function is nonconvex, so we’re just looking for
the best local minimum.



Learning Objectives

K-Means

You should be able to...

1.

Distinguish between coordinate descent and block
coordinate descent

Define an objective function that gives rise to a ""good"
clustering

Apply block coordinate descent to an objective function
preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

Implement the K-Means algorithm

Connect the non-convexity of the K-Means objective
function with the (possibly) poor performance of
random initialization



Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

— Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D = {x",yW}Y,
y@® e R

y® e {1,...,K}
y@ e {+1,-1}
y(%) is a vector
D= (xO1,  x~pt()

predict {z(W}¥ where (V) ¢ {1,..., K}

convert eachx(® € RM toul” € RX with K << M
D= {X(i)7 y(i)}ﬁiﬁ U {X(j)};\zl

D — {(X(l), y(l))7 (X(2), y(2))7 (){(3)73](3))7 .

D = {x"W}  and can query y(¥) = c*(-) at a cost

D = {(sD,aM), (5),a2), ..}

D — {(3(1), a(1)77«(1))7 (5(2), al?) 7»(2)), .

x ~p*(-)andy = c*(+)



ML Big Picture

Learning Paradigms:

What data is available and

when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction

. ensemble learning

. distant supervision

0 hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

UDO0O0ODO

ML as optimization

Problem Formulation:

What is the structure of our output prediction? )
c
boolean Binary Classification T O
categorical Multiclass Classification 42’_8
ordinal Ordinal Classification - - =
. Q O wn
real Regression = 0 UY
ordering Ranking ;<: =S
. . . L. o) - 8 0
multiple discrete  Structured Prediction sV g c%
multiple continuous (e.g. dynamical systems) o S 3 =5
both discrete & (e.g. mixed graphical models) = Q. ; 5% S
cont. TLz29
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

* generalization [ overfitting

*  bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
*  PAClearning

e distant rewards



Outline for Today

We’ll talk about two distinct topics:

1. Ensemble Methods: combine or learn multiple
classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender
systems (the Netflix Prize) to motivate both
topics...

79



RECOMMENDER SYSTEMS



Recommender Systems

A Common Challenge:

— Assume you’re a company
selling items of some sort:
movies, songs, products,
etc.

— Company collects millions
of ratings from users of
their items

— To maximize profit [ user
happiness, you want to
recommend items that
users are likely to want



Recommender Systems
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Recommender Systems
NETFLIX

Netflix Prize

Home Rules Leaderboard Update

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor’s
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

FAQ | Forum | Netflix Home 83
© 1997-2009 Netflix, Inc. All rights reserved.




Recommender Systems

NETELIX

Home Rules Leaderboard Update

FAQ | Forum
© 1997-2009 Netflix, Ir

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2008 we awarded the
$1M Grand Prize to team "BellKor's
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

84



Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos 2009-04-07 12:33:59
Opera Solutions 2009-07-24 00:34:07
BellKor 2009-07-26 17:19:11




ENSEMBLE METHODS



Recommender Systems
NETFLIX

COMPLE TE])

Home Rules Leaderboard Update

Top performing systems
Leaderboard were ensembles

Showing Test Score. Click here to show quiz score

Rank Team Name Best ore % Improvement Best Submit Time
1 BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
2 The Ensemble 0.8567 10.06 2009-07-26 18:38:22
3 Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
5 Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
7 BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
8 Dace 0.8612 9.59 2009-07-24 17:18:43
9 Feeds?2 0.8622 9.48 2009-07-12 13:11:51
10 BigChaos 0.8623 947 2009-04-07 12:33:59
1 Opera Solutions 0.8623 9.47 2009-07-24 00:34:07
12 BellKor 0.8624 9.46 2009-07-26 17:19:11



Weighted l\/\a]orlty Algorlthm

(Littlestone & Warmuth, 1994)

 Given: pool A of binary classifiers (that
you know nothing about)

* Data: stream of examples (i.e. online

learning setting) R g
* Goal: design a new learner that uses PO
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 4

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 3 7



Weighted l\/\a]orlty Algorithm

(Littlestone & Warmuth, 1994)

Suppose we have a pool of T" binary classifiers A = {hq,..., hr}
where h; : RM — {41, —1}. Let oy be the weight for classifier h;.

Algorithm 1 Weighted Majority Algorithm
1: procedure WEIGHTEDMAJORITY(A, ()

2: Initialize classifier weights oy = 1, Vt € {1,...,T}
3: for each training example (x,y) do
4: Predict majority vote class (splitting ties randomly)

h(z) = sign (Z ahy (a:))

if a mistake is made h(z) # y then
6: for each classifiert € {1,...,7} do
7: If he(z) # y, then oy < By

V!




Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <‘: These are
€ H
1. O(log|A|+m), if one algorithm of A makes mls’t,a ke
at most m mistakes. bounds” of the
) variety we saw
2. Sl(log.tll-l,;l + }nj{ if iach tof a :ubpo.oi (;f k for the
gorithms of .A makes at most m mistakes. Perceptron
3. O(log j“—:-l + %), if the total number of mis- algorlthm
takes of a subpool of k£ algorithms of A is

at most m.



ADABOOST



Comparison

Weighted Majority Algorithm

an example of an
ensemble method

assumes the classifiers are
learned ahead of time

only learns (majority vote)
weight for each classifiers

AdaBoost

* anexample of a boosting
method

* simultaneously learns:
— the classifiers themselves

— (majority vote) weight for
each classifiers



AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

100
Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

S . —I— _I__ +
©

B - + S +

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

£3=0.14

103
Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

H =sign | 042
final

+0.92

104
Slide from Schapire NIPS Tutorial



AdaBoost

Given: (x1,y1), - (Tm, Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D, (i) = 1/m.
Fort=1,...,T:

e Train weak learner using distribution D;.
e Get weak hypothesis h; : X — {—1,+1} with error

er = Priwp, [he(@:) # yil -

1 —

e Choose oy = 31n < et).
€

e Update:

Do) — DO { e i ha(s) =y,

7, e if hy(x;) # y;
D, (7) exp(—auyihi(z;))
Zy

where Z; 1s a normalization factor (chosen so that ;. will be a distribution).

Output the final hypothesis:
T
H(z) = sign (Z oztht(:c)) :

t=1
105
Algorithm from (Freund & Schapire, 1999)



AdaBoost
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 35,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

108
Figure from (Freund & Schapire, 1999)



Learning Objectives

Ensemble Methods | Boosting

You should be able to...

1.
2.

3.

Implement the Weighted Majority Algorithm
Implement AdaBoost

Distinguish what is learned in the Weighted
Majority Algorithm vs. Adaboost

Contrast the theoretical result for the
Weighted Majority Algorithm to that of
Perceptron

. Explain a surprisingly common empirical result

regarding Adaboost train/test curves



