
K-Means +
Ensemble Methods +

Recommender Systems +

1

10-301/601 Introduction to Machine Learning

Matt Gormley
Lecture 26

Apr. 20, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders
• Homework 8: Reinforcement Learning

– Out: Tue, Apr. 12
– Due: Thu, Apr. 21 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Thu, Apr. 21
– Due: Wed, Apr. 27 at 11:59pm
– Can only use up to 2 grace/late days,

so we can return grades before final exam
• Exam 3 Practice Problems

– Out: Wed, Apr. 27
• Mock Exam 3

– Out: Wed, Apr. 27
– Due: Mon, May 2 at 11:59pm

• Exam 3
– Tue, May 3 (9:30am – 11:30am)

2

Q&A

3

Q: I’ve had such a great experience with this class, especially
with your excellent TAs: how can I be more like them and
contribute to future iterations of this class?

A: You can apply to be TA for this course next semester (S22)!

Details will be posted to Piazza this week.

CLUSTERING

7

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar
data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.

• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan

Clustering

Question: Which of these partitions is “better”?

12

OPTIMIZATION BACKGROUND

13

Block Coordinate Descent
• Goal: minimize some objective

�⃗�∗ = argmin
"

𝐽 �⃗�

• Idea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.

14

𝜃!

𝜃"

�⃗� #

�⃗� !

�⃗� " �⃗� $

Block Coordinate Descent
• Goal: minimize some objective

�⃗�∗, 𝛽∗ = argmin
#,%

𝐽 �⃗�, 𝛽

• Idea: iteratively pick one block of variables (�⃗� or 𝛽)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.

15

Optimization Background

Whiteboard:
– Coordinate Descent
– Block Coordinate Descent

16

K-MEANS

17

K-Means

Whiteboard:
– K-means recipe
• K-means model parameters
• K-means objective function

18

K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)}
• Repeat until convergence:
– for i in {1,…, N}

z(i)← index j of cluster center nearest to x(i)

– for j in {1,…,K}
c(j)←mean of all points assigned to cluster j

19

K-Means

Whiteboard:
– Clustering: Inputs and Outputs
– Objective-based Clustering
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method

21

K-MEANS EXAMPLE
K=3 cluster centers

24

Example: K-Means

25

Example: K-Means

26

Example: K-Means

27

Example: K-Means

28

Example: K-Means

29

Example: K-Means

30

Example: K-Means

31

Example: K-Means

32

K-MEANS EXAMPLE
K=2 cluster centers

33

Example: K-Means

34

Example: K-Means

35

Example: K-Means

36

Example: K-Means

37

Example: K-Means

38

Example: K-Means

39

Example: K-Means

40

Example: K-Means

41

Example: K-Means

42

INITIALIZING K-MEANS

43

Initialization for K-Means

• Initialization is crucial (how fast it converges, quality of solution output)

• Techniques commonly used in practice

• Random centers from the datapoints (repeat a few times)

• K-means ++ (works well and has provable guarantees)

• Furthest traversal

Slide courtesy of Nina Balcan

K-Means: Random Initialization

Slide courtesy of Nina Balcan

Given a set of data points

Select initial centers at random from amongst the data points

K-Means: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center

K-Means: Random Initialization

Slide courtesy of Nina Balcan

K-Means: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering

Assign each point to its nearest center

K-Means: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering

K-Means: Random Initialization

Slide courtesy of Nina Balcan

K-Means: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center

Recompute optimal centers given a fixed clustering

K-Means: Random Initialization

Good quality solution in this example

Slide courtesy of Nina Balcan

K-Means: Performance

Slide courtesy of Nina Balcan

K-Means: Performance

Slide courtesy of Nina Balcan

K-Means: Performance

Always converges but may converge to a local optimum that is
different from the global optimum, and in fact could be arbitrarily
worse in terms of its score.

Slide courtesy of Nina Balcan

K-Means: Performance

Local optimum: every point is assigned to its nearest center and
every center is the mean value of its points.

Slide courtesy of Nina Balcan

K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan

K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan

K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan

K-Means: Performance

This bad performance, can happen
even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan

K-Means: Performance

Slide courtesy of Nina Balcan

This bad performance, can happen
even with well separated Gaussian
clusters.

K-Means: Performance

• For k equal-sized Gaussians,

Pr[each initial center is in a different Gaussian] ≈ !!
!! ≈

#
$!

• Becomes unlikely as k gets large.

• If we do random initialization, as k increases, it becomes more likely
we won’t have perfectly picked one center per Gaussian in our

initialization (so K-Means will output a bad solution).

Slide courtesy of Nina Balcan

Another Initialization Idea:
Furthest Point Heuristic

Choose 𝐜𝟏 arbitrarily (or at random).

• Pick 𝐜𝐣 among datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 that is farthest

from previously chosen 𝐜𝟏, 𝐜𝟐, … , 𝐜𝒋*𝟏

• For j = 2,… , k

Fixes the Gaussian problem. But it can be thrown off by
outliers….

Slide courtesy of Nina Balcan

Furthest point heuristic does well on previous
example

Slide courtesy of Nina Balcan

(0,1)

(0,-1)

(-2,0) (3,0)

Furthest point initialization heuristic sensitive
to outliers

Assume k=3

Slide courtesy of Nina Balcan

(0,1)

(0,-1)

(-2,0) (3,0)

Furthest point initialization heuristic sensitive
to outliers

Assume k=3

Slide courtesy of Nina Balcan

K-means++ Initialization: D! sampling [AV07]

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 according to the distribution
• For j = 2,… , k

• Interpolate between random and furthest point initialization

𝐏𝐫(𝐜𝐣 = 𝐱𝐢) ∝ 𝐦𝐢𝐧𝐣!#𝐣 𝐱𝐢 − 𝐜𝐣!
𝟐

• Let D(x) be the distance between a point 𝑥 and its nearest center.
Chose the next center proportional to D,(𝐱).

D,(𝐱𝐢)

Theorem: K-means++ always attains an O(log k) approximation to optimal
k-means solution in expectation.

Running K-Means can only further improve the cost.
Slide courtesy of Nina Balcan

K-means++ Idea: D! sampling

• Interpolate between random and furthest point initialization

• Let D(x) be the distance between a point 𝑥 and its nearest center.
Chose the next center proportional to D.(𝐱).

• 𝛼 = 0, random sampling

• 𝛼 = ∞, furthest point (Side note: it actually works well for k-center)

• 𝛼 = 2, k-means++

Side note: 𝛼 = 1, works well for k-median

Slide courtesy of Nina Balcan

(0,1)

(0,-1)

(-2,0) (3,0)

K-means++ handles the case on which furthest
point heuristic failed

Slide courtesy of Nina Balcan

Q&A

75

Q: In k-Means, since we don’t have a validation set, how do we
pick k?

A: Look at the training objective
function as a function of k
and pick the value at the
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.
The objective function is nonconvex, so we’re just looking for
the best local minimum.

J(c, z)

k

Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block

coordinate descent
2. Define an objective function that gives rise to a "good"

clustering
3. Apply block coordinate descent to an objective function

preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective

function with the (possibly) poor performance of
random initialization

76

Learning Paradigms

77

ML Big Picture

78

Learning Paradigms:
What data is available and
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML
Systems:
How to build systems that are
robust, efficient, adaptive,
effective?
1. Data prep
2. Model selection
3. Training (optimization /

search)
4. Hyperparameter tuning on

validation data
5. (Blind) Assessment on test

data

Big Ideas in ML:
Which are the ideas driving
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n

A
re

as
Ke

y
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,

Se
ar

ch

Outline for Today
We’ll talk about two distinct topics:
1. Ensemble Methods: combine or learn multiple

classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender
systems (the Netflix Prize) to motivate both
topics…

79

RECOMMENDER SYSTEMS

80

Recommender Systems
A Common Challenge:
– Assume you’re a company

selling items of some sort:
movies, songs, products,
etc.

– Company collects millions
of ratings from users of
their items

– To maximize profit / user
happiness, you want to
recommend items that
users are likely to want

81

Recommender Systems

82

Recommender Systems

83

Recommender Systems

84

Recommender Systems

85

Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE)

than Netflix’s existing system on 3 million held out ratings

ENSEMBLE METHODS

86

Recommender Systems

87

Top performing systems
were ensembles

Weighted Majority Algorithm
• Given: pool A of binary classifiers (that

you know nothing about)
• Data: stream of examples (i.e. online

learning setting)
• Goal: design a new learner that uses

the predictions of the pool to make
new predictions

• Algorithm:
– Initially weight all classifiers equally
– Receive a training example and predict

the (weighted) majority vote of the
classifiers in the pool

– Down-weight classifiers that contribute
to a mistake by a factor of β

88

(Littlestone & Warmuth, 1994)

Weighted Majority Algorithm

90

(Littlestone & Warmuth, 1994)

Weighted Majority Algorithm

93

Theorems (Littlestone & Warmuth, 1994)

These are
“mistake

bounds” of the
variety we saw

for the
Perceptron
algorithm

ADABOOST

97

Comparison

Weighted Majority Algorithm

• an example of an
ensemble method

• assumes the classifiers are
learned ahead of time

• only learns (majority vote)
weight for each classifiers

AdaBoost
• an example of a boosting

method
• simultaneously learns:

– the classifiers themselves
– (majority vote) weight for

each classifiers

98

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

100
Slide from Schapire NIPS Tutorial

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example

101
Slide from Schapire NIPS Tutorial

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example

102
Slide from Schapire NIPS Tutorial

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example

103
Slide from Schapire NIPS Tutorial

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

104
Slide from Schapire NIPS Tutorial

AdaBoost

105

Given: where ,
Initialize .
For :

Train weak learner using distribution .
Get weak hypothesis with error

Choose .
Update:

if
if

where is a normalization factor (chosen so that will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

and the labels give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution .

Once the weak hypothesis has been received, AdaBoost chooses a parameter as in the
figure. Intuitively, measures the importance that is assigned to . Note that if
(which we can assume without loss of generality), and that gets larger as gets smaller.

The distribution is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by , and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis is a weighted majority vote of the weak hypotheses where is the
weight assigned to .

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance ,
the weak hypothesis outputs a prediction whose sign is the predicted label (or
) and whose magnitude gives a measure of “confidence” in the prediction. In this paper,

however, we focus only on the case of binary () valued weak-hypothesis predictions.

3

Algorithm from (Freund & Schapire, 1999)

AdaBoost

108
Figure from (Freund & Schapire, 1999)

er
ro
r

10 100 1000
0

5

10

15

20

cu
m
ul
at
iv
e
di
st
rib
ut
io
n

-1 -0.5 0.5 1

0.5

1.0

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

4

Learning Objectives
Ensemble Methods / Boosting

You should be able to…
1. Implement the Weighted Majority Algorithm
2. Implement AdaBoost
3. Distinguish what is learned in the Weighted

Majority Algorithm vs. Adaboost
4. Contrast the theoretical result for the

Weighted Majority Algorithm to that of
Perceptron

5. Explain a surprisingly common empirical result
regarding Adaboost train/test curves

109

