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Reminders
• Homework 8: Reinforcement Learning

– Out: Tue, Apr. 12
– Due: Thu, Apr. 21 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Thu, Apr. 21
– Due: Wed, Apr. 27 at 11:59pm
– Can only use up to 2 grace/late days, 

so we can return grades before final exam
• Exam 3 Practice Problems

– Out: Wed, Apr. 27
• Mock Exam 3

– Out: Wed, Apr. 27
– Due: Mon, May 2 at 11:59pm

• Exam 3
– Tue, May 3 (9:30am – 11:30am)
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Q&A
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Q: I’ve had such a great experience with this class, especially 
with your excellent TAs: how can I be more like them and 
contribute to future iterations of this class? 

A: You can apply to be TA for this course next semester (S22)!

Details will be posted to Piazza this week. 



CLUSTERING
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar 
data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g., 
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression 
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.



• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better”?
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OPTIMIZATION BACKGROUND
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Block Coordinate Descent
• Goal: minimize some objective 

�⃗�∗ = argmin
"

𝐽 �⃗�

• Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that one variable, keeping all 
the others fixed. 
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Block Coordinate Descent
• Goal: minimize some objective 

�⃗�∗, 𝛽∗ = argmin
#,%

𝐽 �⃗�, 𝛽

• Idea: iteratively pick one block of variables (�⃗� or 𝛽) 
and minimize the objective w.r.t. that block, 
keeping the other(s) fixed. 
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Optimization Background

Whiteboard:
– Coordinate Descent
– Block Coordinate Descent

16



K-MEANS
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K-Means

Whiteboard:
– K-means recipe
• K-means model parameters
• K-means objective function
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K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)} 
• Repeat until convergence:
– for i in {1,…, N}

z(i)← index j of cluster center nearest to x(i)

– for j in {1,…,K}
c(j)←mean of all points assigned to cluster j
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K-Means

Whiteboard:
– Clustering: Inputs and Outputs
– Objective-based Clustering
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method
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K-MEANS EXAMPLE
K=3 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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K-MEANS EXAMPLE
K=2 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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INITIALIZING K-MEANS
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Initialization for K-Means

• Initialization is crucial (how fast it converges, quality of solution output)

• Techniques commonly used in practice 

• Random centers from the datapoints (repeat a few times)

• K-means ++ (works well and has provable guarantees)

• Furthest traversal

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Slide courtesy of Nina Balcan

Given a set of data points



Select initial centers at random from amongst the data points 

K-Means: Random Initialization

Slide courtesy of Nina Balcan



Assign each point to its nearest center

K-Means: Random Initialization

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering



Assign each point to its nearest center

K-Means: Random Initialization

Slide courtesy of Nina Balcan



Recompute optimal centers given a fixed clustering

K-Means: Random Initialization

Slide courtesy of Nina Balcan



K-Means: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center



Recompute optimal centers given a fixed clustering

K-Means: Random Initialization

Good quality solution in this example

Slide courtesy of Nina Balcan



K-Means: Performance

Slide courtesy of Nina Balcan



K-Means: Performance

Slide courtesy of Nina Balcan



K-Means: Performance

Always converges but may converge to a local optimum that is 
different from the global optimum, and in fact could be arbitrarily 
worse in terms of its score.

Slide courtesy of Nina Balcan



K-Means: Performance

Local optimum: every point is assigned to its nearest center and 
every center is the mean value of its points.

Slide courtesy of Nina Balcan



K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



K-Means: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



K-Means: Performance

This bad performance, can happen 
even with well separated Gaussian 
clusters.

Slide courtesy of Nina Balcan



K-Means: Performance

Slide courtesy of Nina Balcan

This bad performance, can happen 
even with well separated Gaussian 
clusters.



K-Means: Performance

• For k equal-sized Gaussians, 

Pr[each initial center is in a different Gaussian] ≈ !!
!! ≈

#
$!

• Becomes unlikely as k gets large. 

• If we do random initialization, as k increases, it becomes more likely 
we won’t have perfectly picked one center per Gaussian in our 

initialization (so K-Means will output a bad solution).

Slide courtesy of Nina Balcan



Another Initialization Idea: 
Furthest Point Heuristic

Choose 𝐜𝟏 arbitrarily (or at random).

• Pick 𝐜𝐣 among datapoints 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧 that is farthest 

from previously chosen 𝐜𝟏, 𝐜𝟐, … , 𝐜𝒋*𝟏

• For j = 2,… , k

Fixes the Gaussian problem. But it can be thrown off by 
outliers….

Slide courtesy of Nina Balcan



Furthest point heuristic does well on previous 
example

Slide courtesy of Nina Balcan



(0,1)

(0,-1)

(-2,0) (3,0)

Furthest point initialization heuristic sensitive 
to outliers

Assume k=3

Slide courtesy of Nina Balcan



(0,1)

(0,-1)

(-2,0) (3,0)

Furthest point initialization heuristic sensitive 
to outliers

Assume k=3

Slide courtesy of Nina Balcan



K-means++ Initialization: D! sampling [AV07]

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱𝟏, 𝐱𝟐, … , 𝐱𝒏 according to the distribution
• For j = 2,… , k

• Interpolate between random and furthest point initialization

𝐏𝐫(𝐜𝐣 = 𝐱𝐢) ∝ 𝐦𝐢𝐧𝐣!#𝐣 𝐱𝐢 − 𝐜𝐣!
𝟐

• Let D(x) be the distance between a point 𝑥 and its nearest center. 
Chose the next center proportional to D,(𝐱).

D,(𝐱𝐢)

Theorem: K-means++ always attains an O(log k) approximation to optimal 
k-means solution in expectation.

Running K-Means can only further improve the cost.
Slide courtesy of Nina Balcan



K-means++ Idea: D! sampling

• Interpolate between random and furthest point initialization

• Let D(x) be the distance between a point 𝑥 and its nearest center. 
Chose the next center proportional to D.(𝐱).

• 𝛼 = 0, random sampling

• 𝛼 = ∞, furthest point  (Side note: it actually works well for k-center)

• 𝛼 = 2, k-means++

Side note: 𝛼 = 1, works well for k-median 

Slide courtesy of Nina Balcan



(0,1)

(0,-1)

(-2,0) (3,0)

K-means++ handles the case on which  furthest 
point heuristic failed

Slide courtesy of Nina Balcan



Q&A
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Q: In k-Means, since we don’t have a validation set, how do we 
pick k?

A: Look at the training objective 
function as a function of k 
and pick the value at the 
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor 
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10 
times and pick the run that gives the lowest training objective 
function value.
The objective function is nonconvex, so we’re just looking for 
the best local minimum.

J(c, z)

k



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block 

coordinate descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest 
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective 

function with the (possibly) poor performance of 
random initialization
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Learning Paradigms
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Outline for Today
We’ll talk about two distinct topics:
1. Ensemble Methods: combine or learn multiple 

classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce 
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender 
systems (the Netflix Prize) to motivate both 
topics…
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RECOMMENDER SYSTEMS
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Recommender Systems
A Common Challenge:
– Assume you’re a company 

selling items of some sort: 
movies, songs, products, 
etc.

– Company collects millions 
of ratings from users of 
their items

– To maximize profit / user 
happiness, you want to 
recommend items that 
users are likely to want

81



Recommender Systems
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Recommender Systems
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Recommender Systems
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Recommender Systems
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Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE) 

than Netflix’s existing system on 3 million held out ratings 



ENSEMBLE METHODS
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Recommender Systems

87

Top performing systems 
were ensembles



Weighted Majority Algorithm
• Given: pool A of binary classifiers (that 

you know nothing about)
• Data: stream of examples (i.e. online 

learning setting)
• Goal: design a new learner that uses 

the predictions of the pool to make 
new predictions

• Algorithm: 
– Initially weight all classifiers equally
– Receive a training example and predict 

the (weighted) majority vote of the 
classifiers in the pool

– Down-weight classifiers that contribute 
to a mistake by a factor of β

88

(Littlestone & Warmuth, 1994)



Weighted Majority Algorithm
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(Littlestone & Warmuth, 1994)



Weighted Majority Algorithm

93

Theorems (Littlestone & Warmuth, 1994)

These are 
“mistake 

bounds” of the 
variety we saw 

for the 
Perceptron 
algorithm



ADABOOST
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Comparison

Weighted Majority Algorithm

• an example of an 
ensemble method

• assumes the classifiers are 
learned ahead of time

• only learns (majority vote) 
weight for each classifiers

AdaBoost
• an example of a boosting 

method
• simultaneously learns:

– the classifiers themselves
– (majority vote) weight for 

each classifiers
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Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

100
Slide from Schapire NIPS Tutorial 



Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example
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Slide from Schapire NIPS Tutorial 



Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example
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Slide from Schapire NIPS Tutorial 



Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example
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Slide from Schapire NIPS Tutorial 



Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

104
Slide from Schapire NIPS Tutorial 



AdaBoost
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Given: where ,
Initialize .
For :

Train weak learner using distribution .
Get weak hypothesis with error

Choose .
Update:

if
if

where is a normalization factor (chosen so that will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

and the labels give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution .

Once the weak hypothesis has been received, AdaBoost chooses a parameter as in the
figure. Intuitively, measures the importance that is assigned to . Note that if
(which we can assume without loss of generality), and that gets larger as gets smaller.

The distribution is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by , and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis is a weighted majority vote of the weak hypotheses where is the
weight assigned to .

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance ,
the weak hypothesis outputs a prediction whose sign is the predicted label ( or
) and whose magnitude gives a measure of “confidence” in the prediction. In this paper,

however, we focus only on the case of binary ( ) valued weak-hypothesis predictions.

3

Algorithm from (Freund & Schapire, 1999) 



AdaBoost

108
Figure from (Freund & Schapire, 1999) 
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Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).
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Learning Objectives
Ensemble Methods / Boosting

You should be able to…
1. Implement the Weighted Majority Algorithm
2. Implement AdaBoost
3. Distinguish what is learned in the Weighted 

Majority Algorithm vs. Adaboost
4. Contrast the theoretical result for the 

Weighted Majority Algorithm to that of 
Perceptron

5. Explain a surprisingly common empirical result 
regarding Adaboost train/test curves
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