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RECOMMENDER SYSTEMS



Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos 2009-04-07 12:33:59
Opera Solutions 2009-07-24 00:34:07
BellKor 2009-07-26 17:19:11




Recommender Systems
NETFLIX

Netflix

Home Rules Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank Team Name Best Test Score % Improvement Best Submit Time

BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
The Ensemble 0.8567 10.06 2009-07-26 18:38:22
Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
Dace _ 0.8612 9.59 2009-07-24 17:18:43
Feeds?2 0.8622 9.48 2009-07-12 13:11:51
BigChaos 0.8623 947 2009-04-07 12:33:59
Opera Solutions 0.8623 9.47 2009-07-24 00:34:07
BellKor 0.8624 9.46 2009-07-26 17:19:11




Recommender Systems

* Setup:
— |tems:

movies, songs, products, etc.
(often many thousands)

— Users:
watchers, listeners, purchasers, etc.
(often many millions) =

— Feedback: Alice 1
5-star ratings, not-clicking ‘next’,

purchases, e.tc. Bob
* Key Assumptions:

— Can represent ratings numerically | Charlie '3
as a user/item matrix

— Users only rate a small number of
items (the matrix is sparse)



Two Types of Recommender Systems

Content Filtering Collaborative Filtering

* Example: Pandora.com * Example: Netflix movie
music recommendations recommendations
(Music Genome Project) * Pro: Does not assume

* Con: Assumes access to access to

about about items (e.g. does not

items (e.g. properties of a need to know about movie
song) genres)

* Pro: Gotanewitemto * Con: Does not work on
add? No problem, just be new items that have no
sure to include the side ratings

information



COLLABORATIVE FILTERING



Collaborative Filtering

* Everyday Examples of Collaborative Filtering...
— Bestseller lists
— Top 40 music lists
— The “recent returns” shelf at the library
— Unmarked but well-used paths thru the woods
— The printer room at work
— “Read any good books lately?”

* Common insight: personal tastes are correlated

— If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

— especially (perhaps) if Bob knows Alice

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods
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Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

In the figure, assume that

a green line indicates the
movie was watched

Algorithm:

Find neighbors based
on similarity of movie
preferences

2. Recommend movies
y that those neighbors
watched

14
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods

e Assume that both
movies and users

The

Color Purple

live in some low-
dimensional space

describing their
properties
Geared
e Recommend a toward

movie based on its  females

Sense and
Sensibility

proximity to the

- -

user in the latent

space

* Example Algorithm:

The Princess

Diaries

Matrix Factorization

Figures from Koren et al. (2009)
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Recommending Movies

Question: Answer:
Applied to the Netflix Prize

problem, which of the
following methods always
requires side information
about the users and movies?

Select all that apply
K-Means

collaborative filtering
latent factor methods
ensemble methods
content filtering
neighborhood methods
recommender systems

AOmMmmoN®m >



MATRIX FACTORIZATION



Matrix Factorization

* Many different ways of factorizing a matrix

 We’ll consider three:
1.  Unconstrained Matrix Factorization

2. Singular Value Decomposition
3. Non-negative Matrix Factorization

* MF is just another example of a common
recipe:
1. define a model

2. define an objective function
3. optimize with SGD



Matrix Factorization

Whiteboard

— Background: Low-rank Factorizations
— Residual matrix



MF for Netflix Problem

Example
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Figures from Aggarwal (2016)



Regression vs. Collaborative Filtering

[ ] [ ] [ ] [ ]
Regression Collaborative Filtering
A A
TRAINING
ROWS
NO
DEMARCATION
BETWEEN
TRAINING AND
TEST ROWS
TEST
ROWS
v v
<€ > <€ >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

Figures from Aggarwal (2016)



UNCONSTRAINED MATRIX
FACTORIZATION



Unconstrained Matrix Factorization

Whiteboard
— Optimization problem
—SGD
— SGD with Regularization
— Alternating Least Squares
— User/item bias terms (matrix trick)



Unconstrained Matrix Factorization

SGD for UMF:
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Unconstrained Matrix Factorization
SGD for UMF:
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Unconstrained Matrix Factorization

Alternating Least Squares (ALS) for UMF:
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Matrix Factorization

Example
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)
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Matrix Factorization

Mean Loss

Figure from Gemulla et al. (2011)
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SVD FOR COLLABORATIVE
FILTERING



Singular Value Decomposition
for Collaborative Filtering

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV'

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we have the SVD of our ratings matrix
R =QXPT,

but then we truncate each of Q), >}, and P s.t. () and P have only k£
columnsand X is k x k:

R~ Qiiip Pl
For collaborative filtering, let:

U= Qrls
V £ P,

1
= U,V = argmin ~||R — UV'||3
UV 2

s.t. columns of U are mutually orthogonal
s.t. columns of V are mutually orthogonal

Theorem: If R fully
observed and no
regularization, the
optimal UV' from
SVD equals the
optimal UV' from
Unconstrained MF



NON-NEGATIVE MATRIX
FACTORIZATION



Implicit Feedback Datasets

* What information does a five-star rating contain?
1 0.6 .6 6 1
* Implicit Feedback Datasets:
— In many settings, users don’t have a way of expressing dislike for an
item (e.g. can’t provide negative ratings)
— The only mechanism for feedback is to “like” something
* Examples:
— Facebook has a “Like” button, but no “Dislike” button
— Google’s “+1” button

— Pinterest pins

— Purchasing an item on Amazon indicates a preference for it, but
there are many reasons you might not purchase an item (besides

dislike)
— Search engines collect click data but don’t have a clear mechanism
for observing dislike of a webpage

Examples from Aggarwal (2016)



Non-negative Matrix Factorization

Constrained Optimization Problem:

1
U,V = argmin = ||[R — UV?||3
Uy 2

S.t. Uz'j > 0
S.t. Vt,;j > ()

Multiplicative Updates: simple iterative
algorithm for solving just involves multiplying a
few entries together



Fighting Fire with Fire: Using Antidote Data to Improve
Polarization and Fairness of Recommender Systems

Bashir Rastegarpanah Krishna P. Gummadi Mark Crovella
Boston University MPI-SWS Boston University
bashir@bu.edu gummadi@mpi-sws.org crovella@bu.edu

where S; = ¥;eq upu] + 00T + AL,

By using (9) instead of the general formula in (5) we can signif-
icantly reduce the number of computations required for finding
the gradient of the utility function with respect to the antidote
data. Furthermore, the term g,-"'U"Sj'I appears in all the partial

derivatives that correspond to el in jof X and can
be precomputed in each iteration of the algorithm and reused for
computing partial derivatives with respect to different antidote
users,

5 SOCIAL OBJECTIVE FUNCTIONS

The previous section developed a general framework for improving
various properties of recommender systems; in this section we show
how to apply that framework specifically to issues of polarization
and fairness.

As described in Section 2, polarization is the degree to which
opinions, views, and sentiments diverge within a population. Rec-
ommender systems can capture this effect through the ratings that
they present for items. To formalize this notion, we define polariza-
tion in terms of the variability of predicted ratings when compared
across users. In fact, we note that both very high variability, and
very low variability of ratings may be undesirable. In the case of
high variability, users have strongly divergent opinions, leading to
conflict. Recent analyses of the YouTube recommendation system
have suggested that it can enhance this effect [29, 30]. On the other
hand, the convergence of user preferences, i.e,, very low variability
of ratings given to each item across users, corresponds to increased
homogeneity, an undesirable pk that may occur as users
interact with a recommender system [11]. As a result, in what
follows we consider using antidote data in both ways: to either
increase or decrease polarization.

As also described in Section 2, unfairness is a topic of growing
interest in machine learning. Following the discussion in that sec-
tion, we consider a recommender system fair if it provides equal
quality of service (ie., prediction accuracy) to all users or all groups
of users [36].

Next we formally define the metrics that specify the objective
functions associated with each of the above objectives. Since the
gradient of each objective function is used in the optimization algo-
rithm, for reproducibility we provide the details about derivation
of the gradients in appendix A.2.

P

5.1 Polarization

To capture polarization, we seek to measure the extent to which the
user ratings disagree. Thus, to measure user polarization we con-
sider the estimated ratings X, and we define the polarization metric
as the normalized sum of pairwise euclidean distances between
estimated user ratings, ie., between rows of X. In particular:

Rpat®) = =5 7 37 8% - &)1 (10
k=11>k

The normalization term ;}7 in (10) makes the polarization metric
identical to the following definition: *

d
— |
Rpot(X) = 33" of (1)
=t

where o7 is the variance of estimated user ratings for item j. Thus
this polarization metric can be interpreted either as the average of
the variances of estimated ratings in each item, or equivalently as
the average user disagreement over all items.

5.2 Fairness

Individual fairness. For each user i, we define £;, the loss of user

i, as the mean squared estimation error over known ratings of user

i
P& - x|

- WP @ —xll; 12)

19|
Then we define the individual unfairness as the variance of the user
losses:®

i

" 1.
Ringo(X.X) = — t-a) (13)
To improve individual fairness, we seek to minimize R;, .,
Group fairness. Let I be the set of all users/items and G =
{G1 ....Gg} be a partition of users/items into g groups, ie., [ =
Uieq,....g} Gi. We define the loss of group i as the mean squared
estimation error over all known ratings in group i:

L, = WPag, X~ X)ll; Gl
o 12,

For a given partition G, we define the group unfairness as the
variance of all group losses:

g

5 1

RyrpX,X,G) = = 3 3 (Lg - Ly)? (15)
9 Sk

Again, to improve group fairness, we seek to minimize Ry,p.

5.3 Accuracy vs. Social Welfare

Adding antidote data to the system to improve a social utility will
also have an effect on the overall prediction accuracy. Previous
works have considered social objectives as regularizers or con-
straints added to the recommender model (eg, [8, 25, 37]), implying
a trade-off between the prediction accuracy and a social objective.

However, in the case of the metrics we define here, the rela-
tionship is not as simple. Considering polarization, we find that in
general, increasing or decreasing polarization will tend to decrease
system accuracy. In either case we find that system accuracy only
declines slightly in our experiments; we report on the specific val-
ues in Section 6. Considering either individual or group unfairness,
the situation is more subtle. Note that our unfairness metrics will
be exactly zero for a system with zero error (perfect accuracy). Asa

4. L)
“We can desive it by rewriting (10) as Ry (X) = 5 5 nl 3 Dty - 2P
j=t ketink
SNote that for & set of equally likely values i, .. ., X the variance can be expressed
without referring to the mean as: % L{x. -2
e

37



Summary

* Recommender systems solve many real-world
(*large-scale) problems

* Collaborative filtering by Matrix Factorization
(MF) is an efficient and effective approach

* MF is just another example of a common
recipe:

1.
2.

3.

define a model
define an objective function

optimize with your favorite black box optimizer
(e.g. SGD, Gradient Descent, Block Coordinate Descent aka.
Alternating Least Squares)



Learning Objectives

Recommender Systems

You should be able to...

1. Compare and contrast the properties of various families of
recommender system algorithms: content filtering,
collaborative filtering, neighborhood methods, latent factor
methods

2. Formulate a squared error objective function for the matrix
factorization problem

3. Implement unconstrained matrix factorization with a variety of
different optimization techniques: gradient descent, stochastic
gradient descent, alternating least squares

4. Offerintuitions for why the parameters learned by matrix
factorization can be understood as user factors and item factors



EXTRA SLIDES ON UMF



Unconstrained Matrix Factorization

In-Class Exercise

Derive a block coordinate descent algorithm
for the Unconstrained Matrix Factorization
problem.

* User vectors: * Set of non-missing entries
w, € R" Z = {(u,1) : vy; is observed}
* |tem vectors: * Objective:
T
h, e R argmin Z (Vs — nghi)2
woh ez

* Rating prediction:
vui = W, hy

42



Matrix Factorization

(with matrices)

* User vectors:
(Wu)' €R"

* |tem vectors:
H,; e R"

* Rating prediction:

Vui

W H|.;

Figures from Koren et al. (2009)
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Figures from Gemulla et al. (2011)43



Matrix Factorization

(with vectors)

e User vectors:

|Independenre| <=
Day 3 :

w, € R" .

Figures from Koren et al. (2009)

* |tem vectors:

h;, e R"

* Rating prediction:
T
Vi = W, h;

44



Matrix Factorization
(With VECtOI'S) Geaed Scear o
* Set of non-missing entries: A e
Z = {(u,1) : vy; is observed} = | ==ED

* Objective:

45



Matrix Factorization
(with vectors) =l

* Regularized Objective: -2
argmin Z (Uuz’ W5h2)2 i [wastnn G::

Escapist

| Ocearfs 11 -~y Geared

(u,0)EZ Figures from Koren et al. (2009)

+A( Z\Iwzllz +Z|Ihu|\
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o o o  Amadeus |
Matrix Factorization Gl
(with vectors) s I
* Regularized Objective: y
argmin Z (Vi — Wi hy)? ir-n 1 o .24
w,h . |
’ (u,1)€Z Figures from Koren et al. (2009)

+A( ZHW@W _I_ZHhuH

* SGD update for random (u,i):
Cui < Vyi — WL h;
Wy — Wy + y(eyihy — Awy,)
h; < h; + y(ew;wy — Ah;)

47



Matrix Factorization

(with matrices)

* User vectors:
(Wu)' €R"

* |tem vectors:
H,; e R"

* Rating prediction:

Vui

W H|.;

Figures from Koren et al. (2009)
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Figures from Gemulla et al. (2011)48



Matrix Factorization
(with matrices)

* SGD

require that the loss can be written as

L= ) UVij, Wi, H.)
(2,7)€Z

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W and H
while not converged do {step}

Select a training point (%, j) € Z uniformly at random.

W;* — Wz* - CnN%l(VU’ W":*’ H*J)

H.,j < H.; — €N 557 1(Vij, Wis, Hoj)
W,;* «— W,,L*
end while step size

Figure from Gemulla et al. (2011)
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