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Reminders

Homework 9: Learning Paradigms
— Out: Thu, Apr. 21
— Due: Wed, Apr. 27 at 11:59pm

— Can only use up to 2 grace/late days,
so we can return grades before final exam

Exam 3 Practice Problems

— Out: Wed, Apr. 27

Mock Exam 3

— Out: Wed, Apr. 27

— Due: Mon, May 2 at 11:59pm
Exam 3

— Tue, May 3 (9:30am - 11:30am)




Crowdsourcing Exam Questions

In-Class Exercise Answer Here:

1. Select one of
lecture-level
learning objectives

2. Write a question
that assesses that
objective

3. Adjust to avoid
‘trivia style’
question


http://mlcourse.org/slides/10601-objectives.pdf

EXAM LOGISTICS



Exam 3

* Time/Location
— Time: Tue, May 3rd at 8:36 9:30am - 11:30am
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lectures 18 — 26.5

— Format of questions:

* Multiple choice

* True [ False (with justification)

* Derivations

* Short answers

* Interpreting figures

* Implementing algorithms on paper

— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and
back)



Exam 3

* How to Prepare
— Attend (or watch) this exam review session
— Review practice problems
— Review homework problems

— Review the poll questions from each lecture

— Consider whether you have achieved the
learning objectives for each lecture [ section

— Write your cheat sheets



Topics for Exam 1

 Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important COnCEPtS — Linear Regression

— Overfitting
— Experimental Design



Topics for Exam 2

* (lassification * Learning Theory
— Binary Logistic — PAC Learning
Regression  Generative Models
* Important Concepts — Generative vs.
— Stochastic Gradient Discriminative
Descent — MLE | MAP
— Regularization — Naive Bayes

— Feature Engineering

* Feature Learning
— Neural Networks * Regression
— Basic NN Architectures — Linear Regression
— Backpropagation



Topics for Exam 3

* Graphical Models
— HMMs
— Learning and Inference
— Bayesian Networks

* Reinforcement
Learning
— Value Iteration
— Policy Iteration
— Q-Learning
— Deep Q-Learning

* Other Learning
Paradigms
— K-Means
— PCA
— Ensemble Methods
— Recommender Systems

10



MATERIAL COVERED ON EXAM 1



Supervised Binary Classification
* Step 1: training

Training Dataset:
label features

- Given: Iabeled training dataset ; + brown crinkly low
3 = ey none high

— Goal: learn a classifier from the . I
o o 5 - green  none low
training dataset

» Step 2: prediction

W

3= ~ l

— Given: unlabeled test dai

: learned classifier
— Goal: predict a label for ¢

instance

* Step 3: evaluation

— Given: predictions from
: labeled test datas
— Goal: compute the test

rate (i.e. error rate on th

dataset)

Key question in
Machine Learning:

How do we learn the
classifier from data?




Medical Diagnosis

Interview Transcript

Date: Jan. 15, 2022

Parties: Matt Gormley and Doctor S.
Topic: Medical decision making

e Matt: Welcome. Thanks for interviewing with me
today.

*  Dr.S: Interviewing...?

. Matt: Yes. For the record, what type of doctor are
you?

e Dr.S:Who said I’'m a doctor?

e Matt: | thought when we set up this interview you
said—

*  Dr.S:I’ma preschooler.

. Matt: Good enough. Today, I’d like to learn how you
would determine whether or not your little brother
is allergic to cats given his symptoms.

e Dr.S: He’s not allergic.

. Matt: We haven’t started yet. Now, suppose he is
sneezing. Does he have allergies to cats?

. Dr. S: Well, we don’t even have a cat, so that doesn’t

make any sense.
e Matt: What if he is itchy; Does he have allergies?
*  Dr.S: No, that’s just a mosquito.

«  [Editor’s note: preschoolers unilaterally agree that
itchiness is always caused by mosquitos, regardless
of whether mosquitos were/are present.]

Matt: What if he’s both sneezing and itchy?

Dr. S: Then he’s allergic.

Matt: Got it. What if your little brother is sneezing
and itchy, plus he’s a doctor.

Dr. S: Then, thumbs down, he’s not allergic.

Matt: How do you know?

Dr. S: Doctors don’t get allergies.

Matt: What if he is not sneezing, but is itchy, and he
is a fox....

Matt: ...and the fox is in the bottle where the
tweetle beetles battle with their paddles in a puddle
on a noodle-eating poodle.

Dr. S: Then he is must be a tweetle beetle noodle
poodle bottled paddled muddled duddled fuddled
wuddled fox in socks, sir. That means he’s definitely
allergic.

Matt: Got it. Can | use this conversation in my
lecture?

Dr. S: Yes




Function Approximation

Quiz: Implement a simple function which returns -sin(x).

1y —y= —sin(X)%:C*(X)

h(x)

-1

A few constraints are imposed:
1. You can’t call any other trigonometric functions

2. You can call an existing implementation of sin(x) a few times
(e.g.100) to test your solution

3. You only need to evaluate it for x in [0, 2*pi]



od Machine Learning

~«

Learning Algorithm

!

h(x)

1
+ -
0, 1

-+ -+

Predictions

i

l

> Test Error Rate
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Decision Tree Learning Example

Dataset:

Output Y, Attributes Aand B

EEENEE
- 1 0o

1

+ 1
+ 1
+ 1
+ 1
+ 1
+ 1

0

[6+, 2-] [6+, 2-]
A B
PN PN
[0+, 0-] [6+,2-] [2+,2-] [4+, 0-]

Mutual Information
H(Y) = -2/8 log(2/8) - 6/8 log(6/8)

H(Y|A=0) = “undefined”

H(Y|A=1) = - 2/&)3 log(2/8) - 6/8 log(6/8)

= H(Y

H(Y|A) = P(A(=0)H(Y|A=0) + P(A=1)H(Y]|A=1)
= 0 + H(Y|A=1) = H(Y)

I(Y; A) = H(Y) - H(Y|A=1) = 0

H(Y|B=0) = -2/4 log(2/4) - 2/4 log(2/4)
H(Y|B=1) =-0log(o) - 1log(1) =0
H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))

I(Y; B) = H(Y) - 4/8 H(Y|B=0) > 0



Overtfitting in Decision Tree Learning

Accuracy

06 On training data —— -
On test data -—-—--
0.55 -
0.5 | | | | | | | 1 1

0 10 20 30 40 50 60 70 30 90 100

Size of tree (number of nodes)
Figure from Tom Mitchell
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0o
0o

N

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

4.9
5.3
4.9
5.7
6.3
6.7

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7







k-Nearest Neighbors

Suppose we have the
training dataset below. How should we label

N .
- the new point?
Y It depends on k:
"""" 3 “ Xnew
—i 2 if k=1, h(Xnew) = +1
8 -
+ , if K=3, h(xnew) =-1
7“‘-._ + it k=5, h(Xpew) = +1
(«:») HAYPPY2 :I;V; YERAR («-’))

I Il
I i
I i




Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

Answer: Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) +h(y) =
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.
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e We’ll see a number of
commonly used Linear
Classifiers

* These include:
— Perceptron

— Logistic Regression

— Naive Bayes (under e
certain conditions) %G .08 9 for:

— Support Vector |7 o ag
MaChines ................... y E { _ 1 ; _I_ 1 }

_| Directly modeling the
= hyperplane would use a
{ decision function:

h(x) = sign(0” x)

3.5 —






Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R, then the online Perceptron algorithm
makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

- —
- S

\

Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

— ’\V
-~ -
e mm == ™



gs debugged

y, # of bu

Linear Regression by Rand. Guessing

J(0)=J(8,,8,) = = (s —67x"))’
Optimization Method #o: ()= )= ¥ ;@ )

\L

. 1.0
Random Guessing 0.000
1.  Pickarandom 6
2. Evaluate J(0) %
3. Repeat steps1and 2 many I\
times 0.6 _g S 8 Lg oo N
4.  Return 0 that gives 0, fs] TV
smallest J(0) 0.4 O
y = h*(x) S
R h(x; 8%) (unknown) | o
h(x; 63))
0.0 Y T T f
0.0 0.2 0.4 0.6 0.8 1.0
0,
/ t e1 e2 J(e17 eZ)
4 - 1| 0.2 | 0.2 10.4
h(x; 80) 2| 0.3 | 0.7 7.2
o 3| 0.6 | 04 1.0
>
x, amount of sleep 4109 | 07 16.2
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https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/

Linear Regression by Gradient Desc.

J(e) — J(e1, ez) = %i (y(i) _ ng(i)))z
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3 | 0.51 | 0.30 1.5
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1.0
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MATERIAL COVERED ON EXAM 2



Gradient Descent & Convexity

e Gradient

descentis a
local
optimization
algorithm

 |fthe functionis

nonconvex, it
will find a Iocal
minimum, not
necessanl a

global minimum 7
e |fthe functionis

convex, it will
find a global
minimum

\\\\“

\\\

“/" “‘\“

"«

m', i

\ 1y
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Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y) = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p* ()
y ~ p (- x1)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. @* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}



Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds®

features o~ ----- > O_ -
3 Turian et aIOO => O
O O 2019 Hermann et al. A

Sun et al., 2011 Koo et al. 2014

O ?2008 tree
i O embeddings
! Socher et al
8 i O o
i A Hermann & Blunsom,
| / 2013
O ! /
: /
Zhou et al., i M tri
2005 ' word / StTg
i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
e
1 20 12 .. (1.2)° 15
2 1.3 17 ... (17)p
y 10-
10 11 19 .. (1.9)
0.5 -
0.0 -
~0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
40



Goal: Learny=w'f(x) +b
where f(.) is a polynomial

Example: Linear Regression

basis function

e
1 20 12 .. (1.2)°
. (1.7)9
. (2.7 y

. (1.9)

29

100

1.3
0.1

1.1

0.9

1.7

2.7

1.9

1.5

. (15)

2.5 -

2.0 -

1.5 -

0.5 -

0.0 -

-0.5 -

* WithjustN=10
points we overfit!
* Butwith N =100
Linear Regression (poly=9) points, the
overfitting
(mostly)
disappears
* Takeaway: more
data helps
prevent
overfitting

1.0 1.5 2.0 2.5 3.0



Regularization

Given objective function: J(0)
Goal is to find: 0 = argmin J(0) + Ar(0)
6

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

1
Choose form of r(0): M q
— Example: g-norm (usually p-norm):|[8]|, = (Z |8m|>

m=1

q 7(0) yields parame- name  optimization notes
ters that are...
0 ||@|lo=>1(0, #0) zero values Loreg. no good computa-
tional solutions
L ||0]]1 =D |0m] zero values Lireg. subdifferentiable

2 (||0]]2)% = > 02, small values L2reg. differentiable




Decision
Functions

Output

Linear Regression




Decision
Functions

Output

Perceptron




Decision
Functions

. y = hg(x) = 0(0' x

Logistic Regression

In-Class Example

45



Decision

Functions Neural Network

Output Yy = U(IBTZ)
Weights

2y =0 (ag’,x)
Hidden Layer 21 — U(aclr.x)

Weights

46



Error Back-Propagation

47



Training Differentiation Quiz

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest

integer.

Lz

sin(log(x))

y = exp(zz)

log()

Answer: Answers below are in the fc

A. [42,-72]
B. [72,-42]
C. [100,127]
D. [127,100]

T O m m

:
121
)

| 81
15

-

L

L2

Tom matn i1mport T

f Define function

return exp(x*z) + x*z/log(x) + sin(log(x)) / (x*z)

f Inputs
{=2;2=3; g=1e-8

f Finite difference check

rint("dydx =", dydx)
rint("dydz =", dydz)




Architecture #2: AlexNet
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RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]

[ R A R R

TP(WJhD Tp(wzlhz) TP(W3|h3) TP(W4lh4) T](Wslhs) T(W6|h6) TP(W7|h7)
> > > > >l— >

N N N N N\ N

h, h, h, h, hs he h

7
I e O e I I e O I e I I e I I e
\

/ N N N AN N N

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w¢.,, -.., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




Sampling from an RNN-LM

N

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly

father's world; When | was heaven of presence
and our fleets, We spare with haucs Qut cut thy

N

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,

snr | wrestle for my credit; and he that escapes
roken limb shall acquit him

council  am great Murdered a
master's ready there My powe
so much as hell: Some service i
bondman here, Would showAi

Which is the real
Shakespeare?!

is but young and tender; and,
Id be loath to foil him, as |
onour, if he come in:

KING LEAR: O, if you w eeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

love to you, | came hither
to acquaint you wyj t either you might
stay him from his in ent or brook such

disgrace well as he sh ninto, in that it is a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

PAC-MAN Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-
Over?

A. 110

B. 11-20

C. 2130




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — d) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




Learning Theory & Model Selection

error
(i.e. lower =>»
good data fit)

Key Point:
we want
to tradeoff
between
low
training
error and
keeping H
simple
(low VC-
Dim)

Q:ls
Corollary
4 useful?

A: Yes!

A

w0 (|3 e 0n (3)])

bound from Corr. 4
R(h) true error

\ i

R(h) train error

A |
>
|
best tradeoff VC(H)
(i.e. complexity)

Ex: H = Linear Separators in RM

VC(H) = M+1
Q: In practice, how do we tradeoff between error and VC(H)?

A: Use a regularizer! That is, reducing the number of (effective) features

reduces the VC dimension. More features usually leads to a better fit to the
data.




Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news

The Economist The Onion

Soybean Prices Surge as South
American Outlook Deteriorates

Drought is pushing prices up, with shortfalls in production expected to
boost demand for U.S. beans

Agricultural research firm Farm Futures last month forecast that planted soybean

acreage in the U.S. may exceed corn for only the second time in history.
PHOTO: RORY DOYLE/BLOOMBERG NEWS

By Kirk Maltais
Feb.12,2022 7:00 am ET

@ suare A\ TEXT 28

© Listentoarticle (2minutes)

U.S. soybean prices have surged in recent months amid shrinking forecasts for
South American crops.

Prices for soybeans—the base ingredient in many food products, poultry and
livestock feed and renewable fuel, among other things—are edging back toward

highs reached last year, which hadn’t previously been seen in a decade

Watchdog Warns Nearly Every Food
Brand In U.S. Owned By Handful Of
Companies, Which In Turn Are
Controlled By Newman’s Own

Today 9:25AM | Alerts

WASHINGTON—Calling for a full-scale Federal Trade Commission
investigation into the sauce and salad dressing brand, the American Antitrust
Institute issued a report Thursday warning that nearly every food brand in the
United States was owned by a handful of companies, which in turn were
controlled by Newman’s Own. “Kellogg’s, General Mills, PepsiCo, Kraft Heinz—

all of these companies are just Newman'’s Own by another name,” said Diana L.

56



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
y Xp o Xo X3 e Xy

““ ol 1|01 .| 1 "“

1 o|1]|o0 1
1 111 |1 1
0 O 0|1 1
0 110 | 1 0




Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



Recipe for Closed-form MAP
Estimation

Assume data was generated i.i.d. from some model

(i.e. write the generative story)
0~ p(g 0) and then for all i: x( ~ p(x|0©)

Write log-likelihood

{unp(0) = log p(8) + log p(x(M|@) + ... +log p(x(V)|0)
Compute partial derivatives

00ap(0)/00, = ...

aé[\/\AP(e)/aez =

aéMAp(e)/aeM — oo
Set derivatives to zero and solve for 6
00yar(0)/00,, =0 forallme{y, ..., M}

OMAP _

Compute the second derivative and check that {0) is concave down
at eMAP



Recipe for ML
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Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Givendata D = {x(®, y®M}N e Perceptron: hg(x) = sign(8” x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87x
(parameterized by 9)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — (@©T (ANT (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=0(W) o(W) x+b'"/)+b'¥)

o e Generative Models: hg(x) = argmax pg (X, y)

Y

4. Predict on new test example Xpew using hg(+) u

= ho(Xnew) o Naive Bayes: po(x,y) = po(y) || po(zm | v)

m=1

<>

Optimization Method

Objective Function
e Gradient Descent: 8 — 0 — vV J(0) :

) N
e SGD:0 — 0 — 7V J(0) o MLE: J(8) = — Y log p(x, y®)
for¢ ~ Uniform(1,...,N) im1

N
1 :
where J(0) = — E J® (9 N | |
( ) N pt ( ) e MCLE: J(O) _ _E :logp(y(z) |X(z))

i=1
e mini-batch SGD
e L2 Regularized: J'(8) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + A||0]|1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



MATERIAL COVERED ON EXAM 3
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Hidden Markov Model
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Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

I +I+ I= 6 of
us
\

only sek
my incoming

messages
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Forward-Backward Algorithm: Finds Marginals

= total weight of these - = total weight of these
- path preftgxes (@a+b+q) path suffixes (X +y +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Viterbi Algorithm
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Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the
parameter values learned by an HMM?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Ad;j. Ad;j. Noun
funny | funny spot




Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the
parameter values learned by an HMM?

2. Suppose you a learning an HMM POS Tagger,
how many POS tag sequences of length 23 are
there?

3. How does an HMM efficiently search for the
most probable tag sequence given a 23-word
sentence?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Ad;j. Ad;j. Noun
funny | funny spot




Example: CMU Mission Control

90.5 Pittsburgh's NPR News Station
WESA

> o

Morning Edition

Pittsburgh's first mission control
center to land at CMU ahead of
2022 lunar rover launch

90.5 WESA | By Kiley Koscinski n n n =
Published March 29, 2022 at 4:44 PM EDT




The “Burglar Alarm” example

* After you get this phone call,

suppose you learn that there was a FEarthquake

medium-sized earthquake in your

neighborhood. Oh, whew! Probably C Mlarm

not a burglar after all.

« Earthquake “explains away” the -
hypothetical burglar. Phone Call
* But then it must not be the case

that
Burglar 1L Earthquake | PhoneCall

even though
Burglar 1. Earthquake

Slide from William Cohen



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Ima gl ne that
With Emergency Sirens, Officials Say you WO rk at the
By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017 9 1 1 C a I I C e n t e r
g | in Dallas

2. You receive six
| ‘ calls informing
you that the
Emergency

Weather Sirens
are going off
3. What do you

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding C O n C I u d e 7
around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times °

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Sample Questions




Sample Questions




Sample Questions




Sample Questions
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A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



Gibbs Sampling

L (t+1)




RL: Components

From the Environment (i.e. the MDP)

e Statespace, S

* Action space, A

 Reward function, R(s,a), R: S X A —> R Markov Assumption
* Transition probabilities, p(s’ | 5, a) p(st+1 | st a5 81,01)

. . . - =p(5t+1 \ Staa't)
— Deterministic transitions:

p(s’|s,a) = {

where §(s, a) is a transition function

1if5(s,a) = s’
0 otherwise

From the Model
 Policy,m:8 - A
e Value function, V":§ - R

— Measures the expected total payoff of starting in some state s and
executing policy



MDP Example:
Multi-armed bandit

* Single state:
S| =1

* Three actions:
A =1{1,2,3}

« Rewards are stochastic
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Example: Path Planning

Sectlon A

V*H(s) - V"V\X R * XV#(BG "'\)

Ex \)q\& wxnn \ e - % (e + (VT(56,m6Y)

R(s,) = -\ " euX«»y B

RG) = 100§ edey f(

* Values, ASSUM Y=O,°l

- ano“NJ (”LW’ T

\/ﬂ'(%\ - <100 # 0A(ioo) = ~10




Learning

Q" (s, a)

* Algorithm 3: e-greedy online learning of Q* (table form)

* Inputs: discount factory,
an initial state s,
greediness parameter € € [0, 1],
learning rate a € [0, 1] (*mistrust parameter”)

* Initialize Q(s,a) = 0Vs € S,a €A
(Q isa|S|x|A| table or array)
- While TRUE, do
 With probability 1 — ¢, take the greedy action
a = argmax Q(s,a’). Otherwise (with

a'eA
probability €), take a random action a

* Receiverewardr = R(s,a)
* Observe the new state s’ ~ p(S' | s, a)
* UpdateQ and s
Q(s,a) « (1 - @)Q(s,a) +a (r +y maxQ(s’,a))
a
Se s Y : Y ’
Current value Update w/
deterministic transitions

85



R(s,a) represented by —> 0

Y = 0.9 T3

o LF o oPB ol T

@-h_ —1 —»‘@’——» N

0 0 0
Learning 0(3,2) = 0+(09) , max Q(4,a") =27
*( : a'e{-,<1,
Q*(s,a):
Example
0 0

0)
0)
0)
0)
0)
0)
0)

N
~N
O O O O O o o

O O w O O o




Alpha Go

E AlphaGo (Black) vs. Lee Sedol (White) - Game 2
Game of Go (*ﬂ) Final position (AlphaGo wins in 211 moves)
* 19x19 board

2000
* Players alternately e BhY
play black/white 990
stones 200
: ® ®
* Goalis to fully | | o
encircle the largest IR X ' wg:
region on the board : 3
* Simple rules, but :
extremely complex
game play

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee Sedol




Deep Q-Learning

Key Idea:

1.
2.

Use a neural network Q(s,a; ) to approximate Q*(s,a)

Learn the parameters 6 via SGD with training
examples < s, a;, I, Seyq >

88



Playing Atari with Deep RL

¢ SEtUp: RL P s o N
system LAY
observation /< e W AN action
observes the f

pixels on the
screen

e |treceives
rewards as the
game score

 Actions decide
how to move
the joystick /
buttons

89

Figures from David Silver (Intro RL lecture)



Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

(O Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

(O Reinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.



Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

(O Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

(O Reinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.

4. (1 point) True or False: Value iteration is better at balancing exploration and ex-
ploitation compared with policy iteration.

O True
O False



Sample Questions

7.1 Reinforcement Learning

1. For the R(s,a) values shown on the arrows below, what

1s the corresponding optimal policy? Assume the discount
factor is 0.1

4
2. For the R(s,a) values shown on the arrows below, which

are the corresponding V*(s) values? Assume the discount T 2
factor is 0.1

3. For the R(s,a) values shown on the arrows below, which 2
are the corresponding Q*(s,a) values? Assume the

discount factor is 0.1

4. Could we change R(s,a) such that all the V*(s) values

change but the optimal policy stays the same? If so, show
how and if not, briefly explain why not.




Shortcut Example

93
Photo from https://www.springcarnival.org/booth.shtml


https://www.youtube.com/watch?v=MlJN9pEfPfE

PCA section in one slide...

1. Dimensionality reduction: 2. Random Projection:
J KxM
1 ® CD Paﬂioa,7 S‘-"‘“f“' M“Ln.x \/e K
1° e ’—@) Pm]e(:l‘ AMJA B T\)LJ & V)‘Z(’)
> @ ® ® A A o S ST
4. Algorithm for PCA:

3. Definition of PCA: The option we’ll focus on:

Choose the matrix V that either...

1. minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example

e




Projecting MNIST digits

Task Setting:
1.  Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0

2.5

- 2.0

- 1.5

- 1.0

0.5

T T 0.0

|

=
o
= -
N
W



Sample Questions

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R?
are given, where the original features are the coordinates (z,y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1-2 sentences why it is not possible.

Dataset 1: Dataset 2:
. ¢ 0
1 +
¢ o o o
&0 o 0
il o o ¢
— +
. * + *y T o + T4
+ ] +
7 +
I I
+ | +

as 5 2 a8 3



K-Means Algorithm

unlabeled feature vectors
D = {x(, x(),..., x(N\)1

cluster centers ¢ = {c),..., c(K)}

until convergence:
—foriin {1,..., N}
z() « index j of cluster center nearest to x(
— forjin {1,...,K}
cl) « mean of all points assigned to cluster j






K-Means

Example

3, iter=3)

- Clustering with K-Means (k

(Geﬁ‘

(S
&
)

o°a

r

7
«
&

&
<
=

f_(e
€
a

3

100



K-Means

Example

2, iter=8)

~ Clustering with K-Means (k

101



Sample Questions

2.2 Lloyd’s algorithm

35 ; ; ; ; ; ; ; 35
af 3
250 . 1 25}
2t 2
15} 15
Circle the image which depicts i . ’ i
the cluster center positions after 1 o I . | o8|
0 : ""::’:":t"'. R 0
iteration of Lloyd’s algorithm. A
-05 -05
T o5 o0 05 1 15 2 25 3 o5 o os
35 35
3t 3 3
251 L. N 251 L. 1 251
2r 2t 2
T 15} 15
: +
ol 1 1
of 05 ' . 05 .. + .
05 . g AR
5 o o5 1 15 2 25 3 -05 AT -05
o5 0 05 1 15 2 25 3 o5 0 os

Figure 2: Initial data and cluster centers



Recommender Systems

NETFLIX

NG

CEIIXC PEIZE

"

CONPLETED

Home Rules

Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank

- -
N = O

Team Name

BellKor's Pragmatic Chaos

The Ensemble

Grand Prize Team

Opera Solutions and Vandelay United

Vandelay Industries !
PragmaticTheory
BellKor in BigChaos
Dace

Feeds2

BiaChaos

Opera Solutions
BellKor

Best Test Score % Improvement Best Submit Time

0.8567
0.8567
0.8582
0.8588
0.8591
0.8594
0.8601
0.8612
0.8622
0.8623
0.8623
0.8624

10.06
10.06
9.90
9.84
9.81
9.77
9.70
9.59
9.48
9.47
9.47
9.46

2009-07-26 18:18:28
2009-07-26 18:38:22
2009-07-10 21:24:40
2009-07-10 01:12:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 08:14:09
2009-07-24 17:18:43
2009-07-12 13:11:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 17:19:11
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Weighted l\/\a]orlty Algorlthm

(Littlestone & Warmuth, 1994)

* Given: pool A of binary classifiers (that
you know nothing about)

 Data: stream of examples (i.e. online

learning setting) R g
* Goal: design a new learner that uses o ©
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 4

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 7



Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <:: These are
€ .
1. O(log|A|+m), if one algorithm of A makes mls,t,a ke
at most m mistakes. bounds” of the
y variety we saw
2. gl(log.tjl-ll,;l + }n)‘, if ]eza,ch tof a subpo.olt (;(f k for the
gorithms o makes at most m mistakes. Perceptron
3. O(log ]'—;:-l + ), if the total number of mis- algorithm
takes of a subpool of k algorithms of A is

at most m.



AdaBoost: Toy Example

H  =sign| 042
final

+ 0.92

106
Slide from Schapire NIPS Tutorial



Two Types of Collaborative Filtering
2. Latent Factor Methods

 Assume that both
movies and users
live in some low-
dimensional space
describing their
properties

* Recommend a
movie based on its
proximity to the
user in the latent
space

* Example Algorithm:
Matrix Factorization

Figures from Koren et al. (2009)

Geared
toward

females

The Color Purple

Sense and
Sensibility

The Princess
Diaries

Serious

1 Braveheart

Amadeus

Lethal Weapon

]

Ocean’s 11

Geared

toward
males

The Lion Ki
e Dumb and
..a{ Dumber
Independence d}q’
Day =
Gus
Escapist
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MF for Netflix Problem

Example

VONVIgvsYd [© [© |© |o |o |e |o
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L
vavdoan [© (e |[o [T T [ B
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o
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(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



Recommending Movies

Question:

Which of the following pieces of information
about user behavior could be used to improve a
collaborative filtering system?

Select all that apply

A. # of times a user watched a given movie

B. Total # of movies a user has watched

C. How often a user turns on subtitles

D. # of times a user paused a given movie

E. How many accounts a user is associated with
F. # of DVDs a user canrent at a time



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Givendata D = {x(®, y®M}N e Perceptron: hg(x) = sign(8” x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87x
(parameterized by 9)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — (@©T (ANT (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=0(W) o(W) x+b'"/)+b'¥)

o e Generative Models: hg(x) = argmax pg (X, y)

Y

4. Predict on new test example Xpew using hg(+) u

= ho(Xnew) o Naive Bayes: po(x,y) = po(y) || po(zm | v)

m=1

<>

Optimization Method

Objective Function
e Gradient Descent: 8 — 0 — vV J(0) :

) N
e SGD:0 — 0 — 7V J(0) o MLE: J(8) = — Y log p(x, y®)
for¢ ~ Uniform(1,...,N) im1

N
1 :
where J(0) = — E J® (9 N | |
( ) N pt ( ) e MCLE: J(O) _ _E :logp(y(z) |X(z))

i=1
e mini-batch SGD
e L2 Regularized: J'(8) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + A||0]|1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={x®W,yW}Y, x~p*()andy=c*()
y( e R

y@ e {l,...,K}

y) e {+1,-1}

y(® is a vector

D={x"H, x~p*()

D= {X(i)7 y(i)}fill U {X(j)};'\gl

D = {(x(,yM), (x@) 42, (xB) 4B, .}
D = {x}¥  and can query y*) = ¢*(-) at a cost
D = {(sM, a0, (s@,a®), .}

D = {(sW),a® r1)) (52 a2 +@) 1



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Ifjalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
el ea ordinal Ordinal Classification ] g =
*  reinforcement learning real Regression o W Y.Y
°  activelearning ordering Ranking e 5 < O
. imitation learning . . _ S c 8 0
. domain adaptation multiple discrete  Structured Prediction =Ry §
«  online learning multiple continuous (e.g. dynamical systems) o S %C«_S
B e both discrete & (e.g. mixed graphical models) | & = as.8 5
. recommender systems ¢ Qo <12 o
«  feature learning cont. <X Z>wn
0 manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
¢ ensemble learning Systems: . . -
. i isi : Which are the ideas driving

distant supervision i i 5] rrae Al
«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
effective? * inductive bias
Theoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
TP 3. Training (optimization/ . enerative vs. discriminative

L probabilistic el

. . : * deep nets, graphical models
O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning

. 5. (Blind) Assessment ontest ~ *  distant rewards

O ML as optimization data



Course Level Objectives

You should be able to...

1.

Implement and analyze existing learning algorithms, including well-studied
methods for classification, regression, structured prediction, clustering, and
representation learning

Integrate multiple facets of practical machine learning in a single system: data
preprocessing, learning, regularization and model selection

Describe the the formal properties of models and algorithms for learning and
explain the practical implications of those results

Compare and contrast different paradigms for learning (supervised,
unsupervised, etc.)

Design experiments to evaluate and compare different machine learning
techniques on real-world problems

Employ probability, statistics, calculus, linear algebra, and optimization in
order to develop new predictive models or learning methods

Given a description of a ML technique, analyze it to identify (1) the expressive
power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the
size and complexity of the search space; (4) the computational properties of
the algorithm: (5) any guarantees (or lack thereof) regarding termination,
convergence, correctness, accuracy or generalization power.



SIGNIFICANCE TESTING



Significance Testing

Whiteboard
— Which classifier is better?

— Two sources of variance: (1) randomness in
training (2) randomness in test data

— Report system variance

— Significance Testing
* The paired bootstrap test
* The paired permutation test



FAIRNESS IN ML



Are Face-Detection Cameras Racist?

By Adam Rose | Friday, Jan. 22, 2010

[ svare

When Joz Wang and her brother bought their mom a
Nikon Coolpix S630 digital camera for Mother's Day
last year, they discovered what seemed to be a
malfunction. Every time they took a portrait of each
other smiling, a message flashed across the screen
asking, "Did someone blink?" No one had. "I thought
the camera was broken!" Wang, 33, recalls. But when
her brother posed with his eyes open so wide that he
looked "bug-eyed," the messages stopped.

Wang, a Taiwanese-American strategy consultant
who goes by the Web handle "jozjozjoz," tho
was funny that the camera had difficulties figuring

out when her family had their eyes open. So she

Source:

Read Later

Did someone blink?

Joz Wang
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http://content.time.com/time/business/article/0,8599,1954643,00.html

“A Chinese woman [surname Yan] was
offered two refunds from Apple for her
new iPhone X... [it] was unable to tell her

and her other Chinese colleague apart.”

IS THE IPHONE X RACIST? APPLE REFUNDS  Thinking that a faulty camera was to
DEVICE THAT CAN'T TELL CHINESE PEOPLE  plame, the store operator gave [Yan] a
APART, WOMAN CLAIMS

BY CHRISTINA ZHAO ON 12/18/17 AT 12:24 PM EST

refund, which she used to purchase
another iPhone X. But the new phone
turned out to have the same problem,
prompting the store worker to offer her
another refund ... It is unclear whether she

purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263 120
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“As facial recognition systems become

more common, Amazon has emerged asa  Gender and racial bias found in Amazon's
frontrunner in the field, courting customers facial recognition technology (again)

Research shows that Amazon's tech has a harder time identifying

aroun d t h e U S; I n Cl u d I n g p O I ice gender in darker-skinned and female faces
By James Vincent | Jan 25, 2019, 9:45am EST

departments and Immigration and Customs
Enforcement (ICE).”

Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender 121
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“While it [the algorithm] didn't directly
consider ethnicity, its emphasis on medical
costs as bellwethers for health led to the

Healthcare risk algorithm had
'significant racial bias'

It reportedly underestimated health needs for black patients.

code routinely underestimating the needs

of black patients. A sicker black person

3‘ Jon Fingas, @jonfingas would receive the same risk score as a
10.26.19 in Medicine

healthier white person simply because of
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447 122
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Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Two Drug Possession Arrests Two Drug Possession Arrests

DYLAN FUGETT BERNARD PARKER

Prior Offense Prior Offense

1attempted burglary 1 resisting arrest

r . T | without violence

Subsequent Offenses

3 drug possessions Subsequent Offenses
None

BERNARD, PARKER

-

e
LOW RISK 3 HiGHRISK 10 LOW RISK 3 HiGHRISK 10

Fugett was rated low risk after being arrested with cocaine and Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that. marijuana. He was arrested three times on drug charges after that.

Source:


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Word
embeddings

» https://lamyiowce.github.io/word2viz/

and
analogies
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https://lamyiowce.github.io/word2viz/

Running

Example

CMU

- Suppose you're an admissions officer for CMU,

deciding which applicants to admit to your program

- X are the features of an applicant (e.q.,

standardized test scores, GPA)

* ais a protected attribute (e.qg., gender), usually

categoricali.e.a € {a4, ..., ac}

* h(x, a) is your model’s prediction, which usually

corresponds to some decision or action (e.q.,
+ 1 = admit to CMU)

* yis the true, underlying target variable, usually

thought of as some latent or hidden state (e.g.,
+ 1 = this applicant would be “successful” at CMU)
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Three

Criteria for
Fairness

- Independence: h(x,a) L a

* Probability of being accepted is the same for
all genders

- Separation: h(x,a) La |y

* All*good” applicants are accepted with the
same probability, regardless of gender

- Same for all “*bad” applicants

- Sufficiency: vy 1 a | h(X,a)

* For the purposes of predicting y, the
information contained in h(X, a) is
“sufficient”, a becomes irrelevant
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* Pre-processing data

Achievi ng - Additional constraints during training
Fairness

* Post-processing predictions
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Three

Criteria for
Fairness

- Independence: h(x,a) L a

* Probability of being accepted is the same for
all genders

- Separation: h(x,a) La |y

* All*good” applicants are accepted with the
same probability, regardless of gender

- Same for all “*bad” applicants

- Sufficiency: vy 1 a | h(X,a)

* For the purposes of predicting y, the
information contained in h(X, a) is
“sufficient”, a becomes irrelevant

- Any two of these criteria are mutually exclusive in

the general case!
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- Causaliby Bayesian networks to the rescue!

Knowledge

A Fourth

Criterion for
Fairness

Reference
Letters
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- Causaliby Bayesian networks to the rescue!

Knowledge

A Fourth

Criterion for
Fairness

Reference
Letters

- Counterfactual fairness: how would an applicant'’s
probability of acceptance change if they were a
different gender?

Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/as86cdozesaczd270571622f4f316ecs-Paper.pdf 133
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