

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Decision Trees

Matt Gormley Lecture 3 Jan. 26, 2022

Q&A

Q: In our medical diagnosis example, suppose two of our doctors (i.e. experts) disagree about whether (+) or not (-) the patient is sick. How would the decision tree represent this situation?

A: Today we will define decision trees that predict a single class by a majority yote at the leaf. More single class by a majority vote at the leaf. More generally, the leaf could provide a probability distribution over output classes p(y|**x**)

Q&A

Q: How do these In-Class Polls work?

- **A:** Sign into **Google Form (c**lick [Poll] link on Schedule pag[e http://mlcourse.org/schedule.htm](http://mlcourse.org/schedule.html)l) using **Andrew Email**
	- Answer **during lecture for full credit**, or within 24 hours for half credit
	- Avoid the **toxic option** which gives negative points!
	- 8 "free poll points" but can't use more than 3 free polls consecutively. All the questions for one lecture are worth 1 point total.

Latest Poll link[: http://poll.mlcourse.org](http://poll.mlcourse.org/)

First In-Class Poll

Question:

Which of the following did you bring to class today?

- A. Smartphone
- B. Flip phone
- C. Pay phone
- D. No phone

Reminders

- **Homework 1: Background**
	- **Out: Wed, Jan 19 (1st lecture)**
	- **Due: Wed, Jan 26 at 11:59pm**
	- unique policy for this assignment: we will grant (essentially) any and all extension requests
- **Homework 2: Decision Trees**
	- **Out: Wed, Jan. 26**
	- **Due: Fri, Feb. 4 at 11:59pm**

MAKING PREDICTIONS WITH A DECISION TREES

Background: Recursion

- *Def*: a **binary search tree** (BST) consists of nodes, where each node:
	- has a value, v
	- up to 2 children
	- all its left descendants have values less than v, and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

Node Data Structure

class Node: int value Node left Node right

Recursive Search

def contains(node, key):

if key < node.value & node.left != null: return contains(node.left, key) else if node.value < key & node.right != null: return contains(node.right, key) else:

return key == node.value

Iterative Search

def contains(node, key): $cur = node$ while true: if key < cur.value & cur.left != null: $cur = cur$. left else if cur.value < key & cur.right != null: cur = cur.right else: break return key == cur.value

Decision Trees

Whiteboard

- Example Decision Tree as a hypothesis
- $-$ Defining $h(x)$ for a decision tree

Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000) Negative examples are C-sections

 $[833+, 167-]$.83+ .17-Fetal_Presentation = 1: $[822+,116-]$.88+ .12-| Previous_Csection = $0:$ [767+,81-] .90+ .10-| | Primiparous = 0: $[399+,13-]$.97+ .03-| | Primiparous = 1: $[368+, 68-]$.84+ .16-| | | Fetal_Distress = 0: [334+,47-] .88+ .12-1 | | Birth_Weight < 3349: [201+,10.6-] .95+ . | | | Birth_Weight >= 3349: [133+,36.4-] .78+ | $|$ | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: $[55+,35-]$.61+ .39-Fetal_Presentation = $2: [3+, 29-]$.11+ .89-Fetal_Presentation = $3: [8+, 22-]$.27+ .73-

LEARNING A DECISION TREE

Decision Trees

Whiteboard

– Decision Tree Learning

Recursive Training for Decision Trees

def train(dataset D'):

- $-$ Let $p = new Node()$
- *Base Case:* If (1) all labels y(i) in D' are identical (2) D' is empty
	- (3) for each attribute, all values are identical
		-
		- $-$ p.type = Leaf $\frac{1}{2}$ // The node p is a leaf node
		- p.label = majority_vote(D') // Store the label
		- return p
- *Recursive Step:* Otherwise
	- Make an internal node
		- $-$ p.type = Internal $\frac{1}{2}$ The node p is an internal node
	- Pick the *best* attribute X_m according to splitting criterion
		- p.attr = argmax_m splitting criterion(D', X_m)

// Store the attribute on which to split

- For each value v of attribute X_m :
	- $-$ D_{Xm = v} = {(**x**,y) in D': $x_m = v$ } // Select a partition of the data
	-
	- child_v = train($D_{X_{m=v}}$) // Recursively build the child
	-
	- p.branches[v] = child_y $/$ // Create a branch with label v
	- return p

Dataset:

Output Y, Attributes A, B, C

	\boldsymbol{A}	$\mathbf B$	$\mathsf C$
	$\mathbf 1$	$\mathbf O$	\mathbf{O}
	1	$\mathbf O$	$\mathbf{1}$
	1	\overline{O}	$\mathbf O$
\ddagger	\overline{O}	\overline{O}	$\overline{1}$
$+$	1	$\overline{1}$	\mathbf{O}
\ddagger	1	1	$\mathbf 1$
$+$	1	1	$\mathbf O$
$+$	1	1	$\overline{1}$

In-Class Exercise

Using **error rate** as the splitting criterion, what decision tree would be learned?

Decision Trees

Whiteboard

– Example of Decision Tree Learning with Error Rate as splitting criterion

SPLITTING CRITERION: ERROR RATE

Decision Tree Learning

- *Definition*: a **splitting criterion** is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner **selects the "best" attribute** as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
	- error rate (or *accuracy* if we want to pick the tree that *maximizes* the criterion)
	- Gini gain
	- Mutual information
	- random

– …

Dataset:

Output Y, Attributes A and B

In-Class Exercise

Which attribute would **error rate** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither

Dataset:

Output Y, Attributes A and B

Dataset:

Output Y, Attributes A and B

	\overline{A}	\overline{B}	
	1	$\mathbf O$	
	1	$\mathbf O$	
\ddag	1	$\mathbf O$	
$\ddot{}$	1	\overline{O}	
$\ddot{}$	1	1	
$+$	1	1	
$\ddot{}$	1	1	
$\ddot{}$	1	1	

Error Rate

error(h_A , D) = 2/8 error(h_B , D) = 2/8

error rate treats attributes A and B as equally good

SPLITTING CRITERION: MUTUAL INFORMATION

Information Theory & DTs

Whiteboard

- Information Theory primer
	- Entropy
	- (Specific) Conditional Entropy
	- Conditional Entropy
	- Information Gain / Mutual Information
- Information Gain as DT splitting criterion

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$
H(Y) = -\sum_{y \in Y} P(Y = y) \log_2 P(Y = y)
$$

Specific Conditional Entropy: $H(Y | X = x) = -\sum P(Y = y | X = x) \log_2 P(Y = y | X = x)$ $u \in \mathcal{Y}$

Conditional Entropy:
$$
H(Y | X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y | X = x)
$$

Mutual Information: $I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$

- For a decision tree, we can use **mutual information** of the output class *Y* and some attribute *X* on which to split **as a splitting criterion**
- Given a dataset *D* of training examples, we can estimate the required probabilities as…

$$
P(Y = y) = N_{Y=y}/N
$$

\n
$$
P(X = x) = N_{X=x}/N
$$

\n
$$
P(Y = y|X = x) = N_{Y=y,X=x}/N_{X=x}
$$

where $N_{Y=y}$ is the number of examples for which $Y = y$ and so on.

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$. Entropy: $H(Y) = -\sum P(Y = y) \log_2 P(Y = y)$ Specific Conditional Entropy: $H(Y | X = x) = -\sum P(Y = y | X = x) \log_2 P(Y = y | X = x)$ Conditional Entropy: $H(Y | X) = \sum P(X = x)H(Y | X = x)$ Mutual Information: $I(Y; X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$

- **Entropy** measures the **expected # of bits** to code one random draw from X*.*
- For a decision tree, we want to **reduce the entropy of the random variable we are trying to predict**!

 $\frac{1}{2}$ for a decision tree, we can use **Conditional entropy** is the expected value of specific conditional entropy $E_{P(X=x)}[H(Y | X = x)]$

which to split **as a splitting criterion**

Informally, we say that mutual information is a measure of the following: e know X , how much does this required probabilities as the probabilities as \sim *If we know X, how much does this reduce our uncertainty about Y?*

31

Dataset:

Output Y, Attributes A and B

In-Class Exercise

Which attribute would **mutual information** select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)

4. Neither

Dataset:

Output Y, Attributes A and B

Dataset:

Output Y, Attributes A and B

Y	\mathbf{A}	\overline{B}	
	1	O	
	1	\overline{O}	
$\boldsymbol{+}$	1	\overline{O}	
$\ddot{}$	1	\overline{O}	
\ddag	1	$\overline{1}$	
\ddagger	1	1	
\ddagger	1	1	
$\ddot{}$	1	1	

Mutual Information $H(Y) = -2/8 \log(2/8) - 6/8 \log(6/8)$

```
H(Y|A=0) = "undefined"
H(Y|A=1) = -2/8 log(2/8) - 6/8 log(6/8)= H(Y)H(Y|A) = P(A=0)H(Y|A=0) + P(A=1)H(Y|A=1)
      = 0 + H(Y|A=1) = H(Y)I(Y; A) = H(Y) - H(Y|A=1) = 0
```
 $H(Y|B=0) = -2/4 log(2/4) - 2/4 log(2/4)$ $H(Y|B=1) = -0 log(0) - 1 log(1) = 0$ $H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))$ $I(Y; B) = H(Y) - 4/8 H(Y|B=0) > 0$

Tennis Example Simple Training Late

Dataset:

Which attribute should be tested here?

 $S_{\text{sumny}} = \{D1, D2, D8, D9, D11\}$ Gain (S_{Sunny} , Humidity) = .970 – (3/5) 0.0 – (2/5) 0.0 = .970 Gain (S_{Sunnv} , Temperature) = .970 – (2/5) 0.0 – (2/5) 1.0 – (1/5) 0.0 = .570 Gain $(S_{sumny}$, Wind) = .970 – (2/5) 1.0 – (3/5) .918 = .019
Figure from Tom Mitchell 40