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Q&A

Why don’t my entropy calculations match those on the slides?

Remember that H(Y) is conventionally reported in “bits” and computed using

log base 2.
e.g., H(Y) =- P(Y=0) log,P(Y=0) - P(Y=1) log,P(Y=1)

When and how do we decide to stop growing trees? What if the set of
values an attribute could take was really large or even infinite?

We’ll address this question for discrete attributes today. If an attribute is real-
valued, there’s a clever trick that only considers O(L) splits where L = # of
values the attribute takes in the training set. Can you guess what it does?



Q&A

Q, What does decision tree training do if a branch receives no data?

Ac Then we hit the base case and create a leaf node. So the real
* questionis what does majority vote do when there is no data?
Of course, there is no majority label, so (if forced to) we could
just return one randomly.

Q' What do we do at test time when we observe a value
for a feature that we didn’t see at training time.

Ac This really just a variant of the first question. That said, areal DT
* implementation needs to elegantly handle this case. We could
do so by either (a) assuming that all possible values will be seen
at train time, so there should be a branch for all attributes even
if the partition of the dataset doesn’t include them all or (b)
recognize the unseen value at test time and return some
appropriate label in that case.



Reminders

* Exit Poll: HW1 (required for participation)

* Homework 2: Decision Trees

— Out: Wed, Jan. 26
— Due: Fri, Feb. 4 at 11:59pm




EMPIRICAL COMPARISON OF
SPLITTING CRITERIA



Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random,
Gini, mutual information, Marshall) on 12 datasets

Medical Diagnosis Datasets: (4 of 12)

* hypo: data set of 3772 examples records

expert opinion on possible hypo- thyroid kable 1. Properties of the data sets

conditions from 29 real and discrete

attributes of the patient such as sex, age, Data Set  Classes  Attr.s ITraining Set  Test Set

taking of relevant drugs, and hormone

readings taken from drug samples. l;ypo ; 29 1000 2772
* breast: The classes are reoccurrence or reast 2 200 86
non-reoccurrence of breast cancer tumor 22 18 237 102
sometime after an operation. There are lymph 4 18 103 45
nine attributes giving details about the LED 10 7 200 1800
original cancer nodes, position on the mush 2 22 200 7924
breast, and age, with multi-valued discrete | joq ) 17 200 235
and real values. votes] ? 16 200 235
*  tumor: examples of the location of a iris 3 4 100 50
primary tumor glass 7 9 100 114
* lymph: from the lymphography domainin <d6 ) 10 200 400
oncology. The classes are normal, pole 5 4 200 1647

metastases, malignant, and fibrosis, and

there are nineteen attributes giving details
about the lymphatics and lymph nodes

Table from Bluntine & Niblett (1992)



Experiments: Splitting Criteria

Table 3. Error for different splitting rules (pruned trees).

Splitting Rule

Data Set GINI Info. Gain Marsh. Random
hypo 1.01 + 0.29 0.95 + 0.22 1.27 + 0.47 7.44 + 0.53
breast 28.66 + 3.87 28.49 + 4.28 27.15 + 4.22 29.65 + 4.97
tumor 60.88 + 5.44 62.70 + 3.89 61.62 + 3.98 67.94 + 5.68
lymph 24.44 + 6.92 24.00 + 6.87 24.33 + 5.51 32.33 + 11.25
LED 33.77 + 3.06 32.89 + 2.59 33.15 + 4.02 38.18 + 4.57
mush 1.44 + 047 1.44 + 0.47 7.31 + 2.25 877 + 4.65
votes 4.47 + 0.95 4.57 + 0.87 11.77 + 3.95 12.40 + 4.56
votesl 12.79 + 1.48 13.04 + 1.65 15.13 + 2.89 15.62 + 2.73
iris 5.00 + 3.08 4.90 + 3.08 5.50 £ 2.59 14.20 + 6.77
glass 39.56 + 6.20 50.57 + 6.73 40.53 + 6.41 53.20 + 5.01
xd6 22.14 + 3.23 22.17 + 3.36 22.06 + 3.37 31.86 + 3.62
pole 15.43 + 1.51 15.47 + 0.88 1 + 1.15. 26.38 + 6.92

Table from Bluntine & Niblett (1992)

Info. Gain is another name
for mutual information
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Experiments: Splitting Criteria

Table 4. Difference and significance of error for GINI splitting rule
versus others.

Splitting Rule

Data Set Info. Gain Marsh. Random
hypo —0.06 (0.82) 0.26 (0.99) 6.43 (1.00)
breast —0.17 (0.23) —1.51 (0.94) 0.99 (0.72)
tumor 1.81 (0.84) 0.74 (0.39) 7.06 (0.99)
lymph —0.44 (0.83) @jl (0.05) 7.89 (0.99)
LED 0.12 (0.17) 8] Results are of the form
mush 0.00 (0.00) 5.86] A-AA (B.BB) where:
et =20l 1.  A.AAis the average
:g:::] Key Takeaway: GINI gg difference in errors
iy gain and Mutual SEEEEI ENE EE
iris . 50 methods
Information are : o
glass erfes] 06] 2. B.BBis the significance
<d6 ~ statistically 07 of the difference
|nd|st|ngu15hable! according to a two-tailed
pole 43 paired t-test




INDUCTIVE BIAS
(FOR DECISION TREES)



Decision Tree Learning Example

Dataset:

Output Y, Attributes A, B, C

+ 0o 0)
+ o)
- o)
+ o)
- 1
- 1
- 1
+ 1

In-Class Exercise

Which of the following trees would be learned by the
the decision tree learning algorithm using “error
rate” as the splitting criterion?

(Assume ties are broken alphabetically.)
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Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalistofind the
lowest (total) weight
path from root to a

2 leaf
Greedy Search:
1 C At each node, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

C Computation time:
linear in max path
length
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Background: Greedy Search

Goal:

Search space consists
of nodes and weighted
edges

Goal is to find the
lowest (total) weight

path from root to a
leaf

Greedy Search:

At each node, selects
the edge with lowest
(immediate) weight
Heuristic method of
search (i.e. does not
necessarily find the
best path)

Computation time:
linear in max path
length



Background: Global Search

Goal:

Search space consists
of nodes and weighted
edges

Goal is to find the
lowest (total) weight

path from root to a
leaf

Global Search:

Compute the weight
of the path to every
leaf

Exact method of
search (i.e.
gauranteed to find the
best path)

Computation time:
exponential in max
path length



Decision Tree Learning as Search

1. search space: all possible decision trees 4. edge weight: (negative) splitting criterion
2. node: single decision tree 5. DT learning: greedy search, maximizing our
3.  edge: connects one full tree to another, splitting criterion at each step
where child has one more split than parent -— =~
{... \ N 2 > SR
0, 1
PR RN //, - "‘_>( 4 gender  hives I
i y\ \s 2 -~ ﬂ N\ /
A + =1 - +,
/7 N\ / \ ’
_ 1 V4 B ~ o — -
1, = /\
// / hlves gender 1( TN
_ CICN ) /
A ?( /\ N\ ) N7 e P
STARTE ~ 7 YO N ‘D
\ - / ,7(...,
\ .5 gender sneeze - -
\ N N
\ /\ g P @ 0 «
\oo /
\ \ = A’ hlves
\ - ~ \ N3 + 7 N \Neery
\ 7 gender \\ N . _ \
o= == - \
\ /\ \ -1 Q( .y
\ \ -~ o =
 J— -7 j - age \\
0 1
/ N\, .
| sneeze +

v AN )



Big Question:

How is it that your
ML algorithm can
generalize to
unseen examples?



ID3 = Decision Tree
. Learning with Mutual

DT’ Remarks Information as the

splitting criterion

Question: Which tree does ID3 find?
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ID3 = Decision Tree

DT: Remarks Learning with Mutual

Information as the
splitting criterion

Question: Which tree does ID3 find?

Definition:
We say that the inductive bias of a machine learning

algorithm is the principal by which it generalizes to unseen
examples

Inductive Bias of ID3:

Smallest tree that matches the data with high mutual
information attributes near the top

Occam’s Razor: (restated for ML)
Prefer the simplest hypothesis that explains the data



Decision Tree Learning Example

Dataset:

Output Y, Attributes A, B, C

+ 0o 0)
+ 0
- o)
+ o)
- 1
- 1
- 1
+ 1

In-Class Exercise

Suppose you had an algorithm that found the tree
with lowest training error that was as small as
possible (i.e. exhaustive global search), which tree

would it return?

(Assume ties are broken by choosing the smallest.)
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OVERFITTING
(FOR DECISION TREES)



Decision Tree Generalization

Question:

Which of the following
would generalize best to
unseen examples?

A. Small tree with low
training accuracy

B. Large tree with low
training accuracy

C. Small tree with high
training accuracy

D. Large tree with high
training accuracy

Answer:

FHEEE



Overfitting and Underfitting

Underfitting

The model...

— istoo simple

— is unable captures the trends

in the data

— exhibits too much bias
Example: majority-vote
classifier (i.e. depth-zero
decision tree)

Example: a toddler (that has
not attended medical school)
attempting to carry out
medical diagnosis

Overfitting

e The model...

— is too complex

— s fitting the noise in the data
or fitting “outliers”

— does not have enough bias

* Example: our “memorizer”
algorithm responding to an
irrelevant attribute

* Example: medical student
who simply memorizes
patient case studies, but does
not understand how to apply
knowledge to new patients



Overfitting

* Given a hypothesis h, its...

... error rate over a
... error rate over a
...true error over a

training data:  error(h, Diin)
test data: error(h, Diest)
data: error,.(h)

» We say h overfits the training data if... ﬁ

errortrue(h) > error(h, Dtrain) In practice,

error,. .(h)is

* Amount of overfitting = unknown

errortrue(h) — error(h, Dtrain)

Slide adapted from Tom Mitchell




Overtfitting in Decision Tree Learning

Accuracy

06 On training data —— -
On test data -—-—--
0.55 -
0.5 | | | | | | | 1 1

0 10 20 30 40 50 60 70 30 90 100

Size of tree (number of nodes)
Figure from Tom Mitchell



How to Avoid Overfitting?

For Decision Trees...

1.

Do not grow tree beyond some maximum
depth

Do not split if splitting criterion (e.g. mutual
information) is below some threshold

Stop growing when the split is not statistically
significant

Grow the entire tree, then prune



Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data 1s limited?

Slide from Tom Mitchell
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Effect of Reduced-Error Pruning

0.9 T

0.85

0.8

0.75

o
~J

Accuracy

On training data —— 4
On test data ----
On test data (during pruning) -----

L 1 1 1 L L 1

Slide from Tom Mitchell

20

30 40 50 60 70 80 90 100

Size of tree (number of nodes)
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Effect of Reduced-Error Pruning

0.9 | ) I 1 1 || I 1 ||
0.85 L -
0.8 | /_’.!/_f_,
IMPORTANT! | .
Shortly, we’lllearn |
that doing pruning
on test data is the On training data ——
. On test data ----
Wrong thlng to do- :> On test data (during pruning) -----
Instead, useathird o © s @ 70 8
“Va“dation” dataset- Size of tree (number of nodes)

Slide from Tom Mitchell



Decision Trees (DTs) in the Wild

DTs are one of the most popular classification methods
for practical applications

— Reason #1: The learned representation is easy to explain a
non-ML person

— Reason #2: They are efficient in both computation and
memory

DTs can be applied to a wide variety of problems

including classification, regression, density estimation,

etc.

Applications of DTs include...

— medicine, molecular biology, text classification,
manufacturing, astronomy, agriculture, and many others
Decision Forests learn many DTs from random subsets of
features; the result is a very powerful example of an
ensemble method (discussed later in the course)



DT Learning Objectives

You should be able to...

1.
2.

N

Implement Decision Tree training and prediction

Use effective splitting criteria for Decision Trees and be able to
define entropy, conditional entropy, and mutual information /
information gain

Explain the difference between memorization and
generalization [CIML]

Describe the inductive bias of a decision tree

Formalize a learning problem by identifying the input space,
output space, hypothesis space, and target function

Explain the difference between true error and training error
Judge whether a decision tree is ""underfitting" or "overfitting"

Implement a pruning or early stopping method to combat
overfitting in Decision Tree learning



REAL VALUED ATTRIBUTES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Species Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
1 6.3

- O O O

—_—

1 6.7

3.0
3.6
3.7
2.4
2.8
3-3
3.0

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set
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Fisher Iris Dataset
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K-NEAREST NEIGHBORS



Classification & KNN

Whiteboard:

— Binary classification
— 2D examples
— Decision rules | hypotheses

— Nearest Neighbor and k-Nearest Neighbors
classifiers

— KNN for binary classification



