
Perceptron

1

10-301/601 Introduction to Machine Learning

Matt Gormley
Lecture 6

Feb. 4, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Q&A

5

Q: How do we define a distance function when 
the features are categorical (e.g. weather 
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to 
numeric features (e.g. binary)
Step 2: Select an appropriate distance function 
(e.g. Hamming distance)



Q&A

7

Q: Those decision boundary figures for KNN 
were really cool, how did you make those?

A: Well it’s a little complicated for k > 1, but here’s a way you can think 
about decision boundaries for a nearest neighbor hypothesis (k=1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-



Q&A

9

Q: Those decision boundary figures for KNN 
were really cool, how did you make those?

A: Well it’s a little complicated for k > 1, but here’s a way you can think 
about decision boundaries for a nearest neighbor hypothesis (k=1)



Reminders
• Homework 2: Decision Trees
– Out: Wed, Jan. 26
– Due: Fri, Feb. 4 at 11:59pm

• HW1 Resubmission: 
– You should only resubmit if you receive email 

from us inviting you to resubmit. 
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Fri, Feb. 4
– Due: Fri, Feb. 11 at 11:59pm 
– (only two grace/late days permitted)

10



GEOMETRY & VECTORS

11



Geometry

In-Class Exercise
Draw a picture of the 
region corresponding 
to:

Draw the vector
w = [w1, w2]

12

Answer Here:



Visualizing Dot-Products

Whiteboard:
– definition of dot product
– definition of L2 norm
– definition of orthogonality

13



Vector Projection

14

Question: 
Which of the following is the projection of a vector a onto a 
vector b?



Visualizing Dot-Products

Whiteboard:
– vector projection
– hyperplane definition
– half-space definitions

15



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



ONLINE LEARNING

17



Online vs. Batch Learning

Batch Learning
Learn from all the examples at 
once

Online Learning
Gradually learn as each example 
is received

18



Online Learning
Examples
1. Stock market prediction (what will the value 

of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam 

and regular mail changes over time, but the 
target function stays fixed - last year's spam 
still looks like spam)

3. Recommendation systems. Examples: 
recommending movies; predicting whether a 
user will be interested in a new news article

4. Ad placement in a new market
19

Slide adapted from Nina Balcan



Online Learning
For i = 1, 2, 3, …:
• Receive an unlabeled instance x(i)

• Predict y’ = hθ(x(i))
• Receive true label y(i)

• Suffer loss if a mistake was made, y’ ≠ y(i)

• Update parameters θ

Goal:
• Minimize the number of mistakes

20



THE PERCEPTRON ALGORITHM

21



Perceptron

Whiteboard:
– (Online) Perceptron Algorithm
– Hypothesis class for Perceptron
– 2D Example of Perceptron

22



23



Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

𝑤! = (0,0)

𝑤" = 𝑤! − −1,2 = (1, −2)

𝑤# = 𝑤" + 1,1 = (2, −1)

𝑤$ = 𝑤# − −1,−2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)
§ Set t=1, start with all-zeroes weight vector 𝑤!.
§ Given example 𝑥, predict positive iff 𝑤% ⋅ 𝑥 ≥ 0.
§ On a mistake, update as follows: 

• Mistake on positive, update 𝑤%&! ← 𝑤% + 𝑥
• Mistake on negative, update 𝑤%&! ← 𝑤% − 𝑥

1,0 +
1,1 +

−1,0 −
−1, −2 −
1, −1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan



Intercept Term
Q: Why do we need an 
intercept term?

A: It shifts the decision 
boundary off the origin

28

w

b < 0

b = 0

b > 0

Q: Why do we add / subtract 1.0 
to the intercept term during 
Perceptron training?
A: Two cases
1. Increasing b shifts the 

decision boundary 
towards the negative side

2. Decreasing b shifts the 
decision boundary 
towards the positive side



Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important 

(and should be corrected)

29



Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1): 

w

Hyperplane (Definition 2): 

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one to 
get x’!

1
’

’ ’

1

1



(Online) Perceptron Algorithm

31

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1



(Online) Perceptron Algorithm

32

Learning:

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1



(Online) Perceptron Algorithm

33

Learning:

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same 
behavior as our “add on 

positive mistake and 
subtract on negative 

mistake” version, because 
y(i) takes care of the sign



(Batch) Perceptron Algorithm

34

Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �



(Batch) Perceptron Algorithm

35

Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch 
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a 
so-called Hinge Loss on a linear separator



Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during 

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way 

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially 

large set
– Mistake bound does not depend on the size of that set

36



Perceptron Exercises
Question:
The parameter vector w learned by the 
Perceptron algorithm can be written as 
a linear combination of the feature 
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with 
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

37



PERCEPTRON MISTAKE BOUND

38



Perceptron Mistake Bound

39
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin 𝛾 and all points lie inside 
a ball of radius 𝑅, then the online Perceptron algorithm 
makes ≤ ⁄𝑅 𝛾 1 mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.


