

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Perceptron

Matt Gormley Lecture 6 Feb. 4, 2022

Q&A

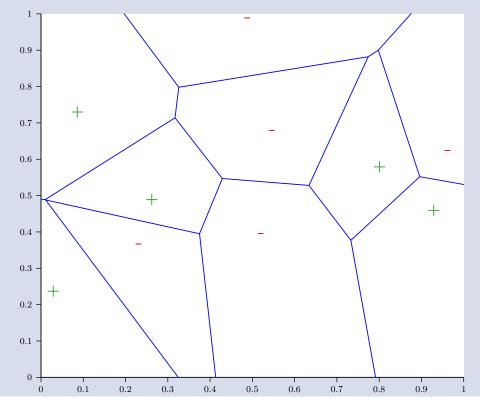
Q: How do we define a distance function when the features are categorical (e.g. weather takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to numeric features (e.g. binary) Step 2: Select an appropriate distance function (e.g. Hamming distance)

Q&A

Q: Those decision boundary figures for KNN were really cool, how did you make those?

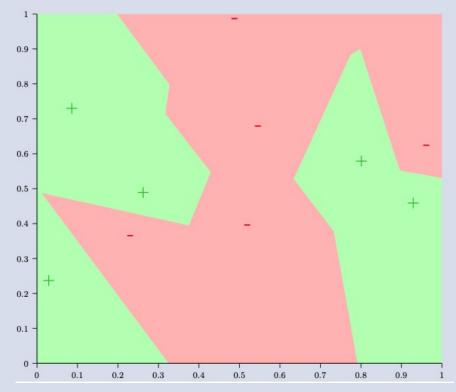
A: Well it's a little complicated for k > 1, but here's a way you can think about decision boundaries for a nearest neighbor hypothesis (k=1)



Q&A

Q: Those decision boundary figures for KNN were really cool, how did you make those?

A: Well it's a little complicated for k > 1, but here's a way you can think about decision boundaries for a nearest neighbor hypothesis (k=1)



Reminders

- Homework 2: Decision Trees
 - Out: Wed, Jan. 26
 - Due: Fri, Feb. 4 at 11:59pm
- HW1 Resubmission:
 - You should only resubmit if you receive email from us inviting you to resubmit.
- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Fri, Feb. 4
 - Due: Fri, Feb. 11 at 11:59pm
 - (only two grace/late days permitted)

GEOMETRY & VECTORS

Geometry

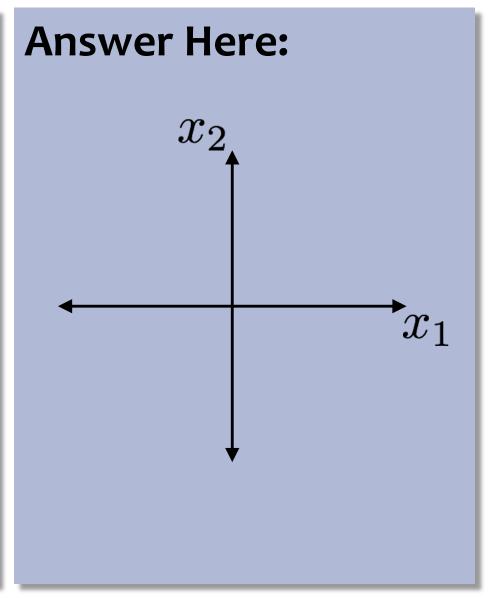
In-Class Exercise

Draw a picture of the region corresponding to:

 $w_1 x_1 + w_2 x_2 + b > 0$

where $w_1 = 2, w_2 = 3, b = 6$

Draw the vector $\mathbf{w} = [w_1, w_2]$



Visualizing Dot-Products

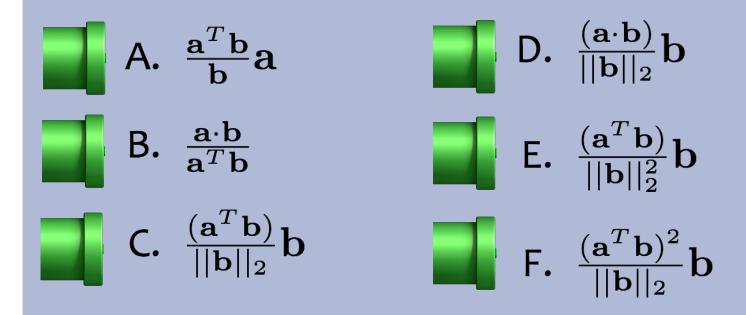
Whiteboard:

- definition of dot product
- definition of L2 norm
- definition of orthogonality

Vector Projection

Question:

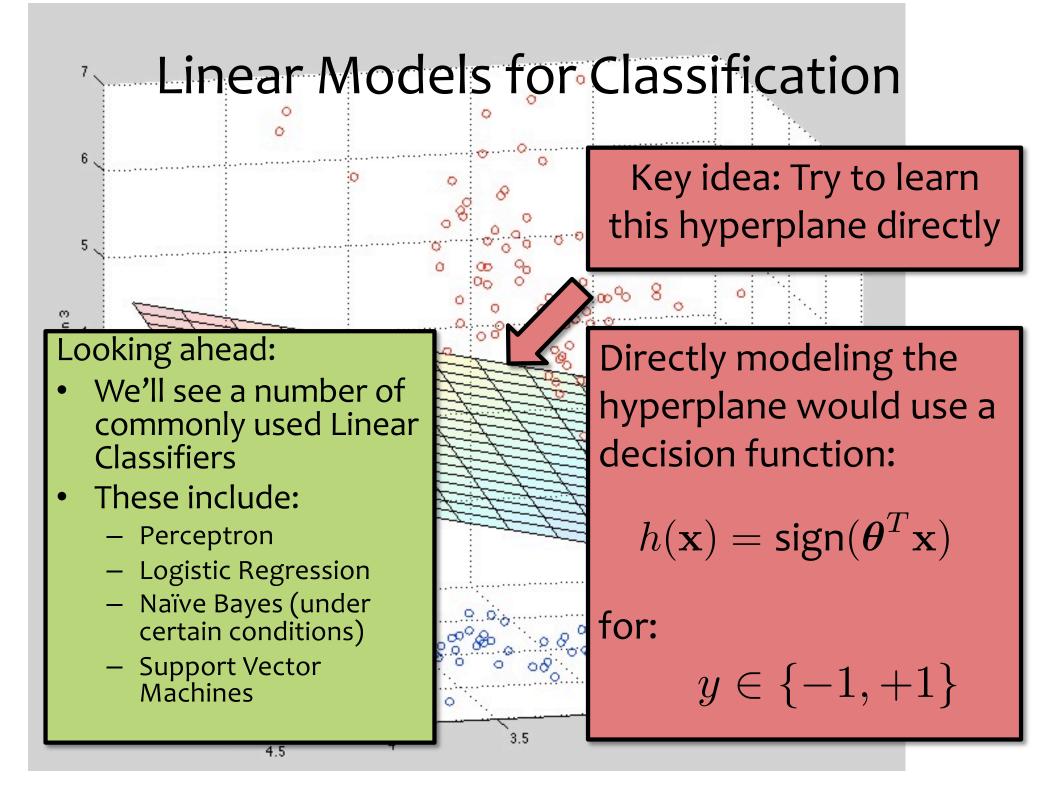
Which of the following is the projection of a vector **a** onto a vector **b**?



Visualizing Dot-Products

Whiteboard:

- vector projection
- hyperplane definition
- half-space definitions



ONLINE LEARNING

Online vs. Batch Learning

Batch Learning

Learn from all the examples at once

Online Learning

Gradually learn as each example is received

Online Learning

Examples

- **1. Stock market** prediction (what will the value of Alphabet Inc. be tomorrow?)
- 2. Email classification (distribution of both spam and regular mail changes over time, but the target function stays fixed - last year's spam still looks like spam)
- **3. Recommendation** systems. Examples: recommending movies; predicting whether a user will be interested in a new news article
- 4. Ad placement in a new market

Online Learning

For i = 1, 2, 3, ...**:**

- **Receive** an unlabeled instance **x**⁽ⁱ⁾
- Predict $y' = h_{\theta}(\mathbf{x}^{(i)})$
- Receive true label y⁽ⁱ⁾
- Suffer loss if a mistake was made, $y' \neq y^{(i)}$
- Update parameters θ

Goal:

• Minimize the number of mistakes

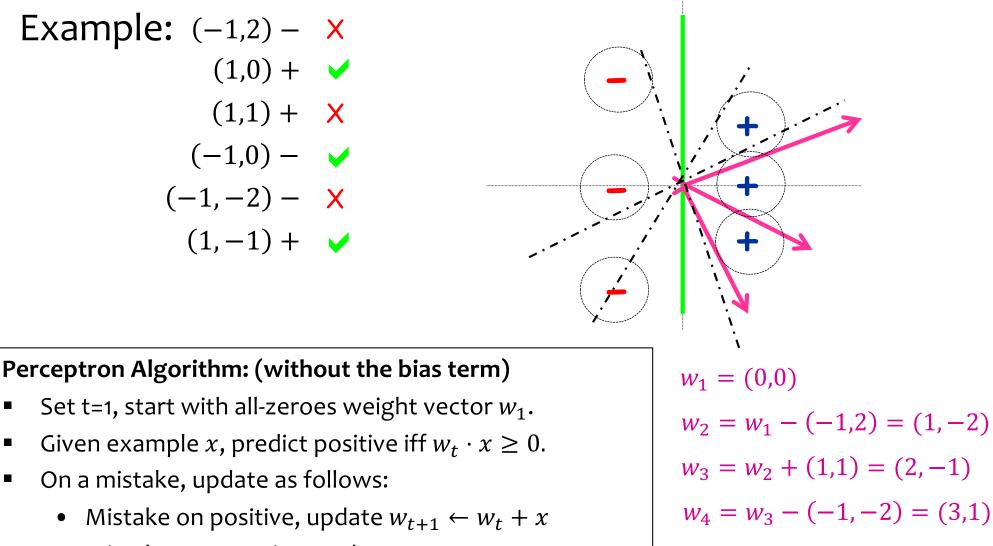
THE PERCEPTRON ALGORITHM

Perceptron

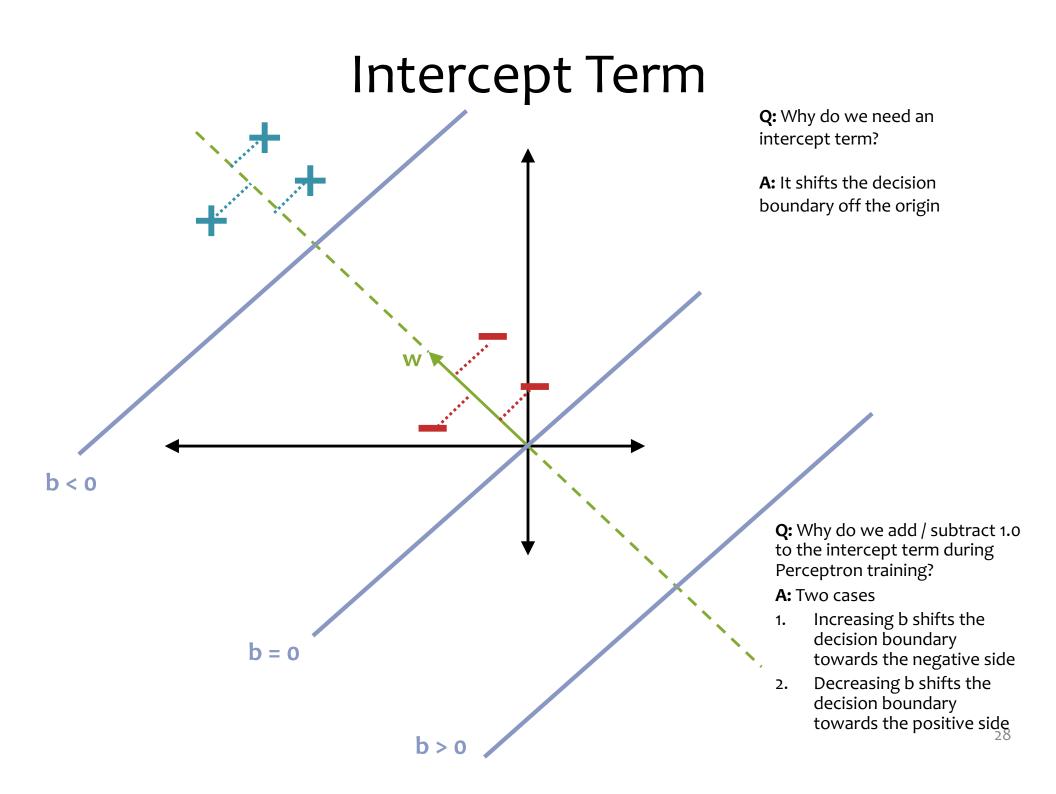
Whiteboard:

- (Online) Perceptron Algorithm
- Hypothesis class for Perceptron
- 2D Example of Perceptron

Perceptron Algorithm: Example



• Mistake on negative, update $w_{t+1} \leftarrow w_t - x$



Perceptron Inductive Bias

- 1. Decision boundary should be linear
- Most recent mistakes are most important (and should be corrected)

Background: Hyperplanes

Notation Trick: fold the bias b and the weights w into a single vector **θ** by prepending a constant to x and increasing dimensionality by one to get x'! Hyperplane (Definition 1): $\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$ Hyperplane (Definition 2): $\mathcal{H} = \{\mathbf{x}' : \boldsymbol{\theta}^T \mathbf{x}' = 0$ $\mathbf{M} = [b, w_1, \dots, w_M]^T$

Half-spaces: $\mathcal{H}^{+} = \{\mathbf{x} : \boldsymbol{\theta}^{T}\mathbf{x} > 0 \text{ and } x_{1} = 1\}$ $\mathcal{H}^{-} = \{\mathbf{x} : \boldsymbol{\theta}^{T}\mathbf{x} < 0 \text{ and } x_{1} = 1\}$

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length *M*. Outputs are discrete. $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$

where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{\theta}(\mathbf{x}) = \operatorname{sign}(\theta^{T}\mathbf{x}) \qquad \operatorname{sign}(a) = \begin{cases} 1, & \text{if } a \ge 0\\ -1, & \text{otherwise} \end{cases}$$

Assume $\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$ and $x_1 = 1$

Learning: Iterative procedure:

- initialize parameters to vector of all zeroes
- while not converged
 - receive next example (x⁽ⁱ⁾, y⁽ⁱ⁾)
 - predict y' = h(x⁽ⁱ⁾)
 - **if** positive mistake: **add x**⁽ⁱ⁾ to parameters
 - **if** negative mistake: **subtract x**⁽ⁱ⁾ from parameters

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length *M*. Outputs are discrete. $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$

where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x}) \qquad \operatorname{sign}(a) = \begin{cases} 1, & \text{if } a \ge 0\\ -1, & \text{otherwise} \end{cases}$$
Assume $\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$ and $x_1 = 1$

Learning:

Algorithm 1 Perceptron Learning Algorithm (Online)

1: **procedure** PERCEPTRON($\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\}$) 2: $\theta \leftarrow 0$ \triangleright Initialize parameters 3: **for** $i \in \{1, 2, \ldots\}$ **do** \triangleright For each example 4: $\hat{y} \leftarrow \text{sign}(\theta^T \mathbf{x}^{(i)})$ \triangleright Predict 5: **if** $\hat{y} \neq y^{(i)}$ **then** \triangleright If mistake 6: $\theta \leftarrow \theta + y^{(i)} \mathbf{x}^{(i)}$ \triangleright Update parameters 7: **return** θ

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length *M*. Outputs $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$ are discrete.

where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{+1, -1\}$

Prediction: Output determine Implementation Trick: same

$$\hat{y} = h_{\theta}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

Assume
$$oldsymbol{ heta} = [b, w_1, \dots, w_M]$$

Learning:

4:

5:

6:

7:

Algorithm 1 Perceptron Learning Alg

1: **procedure** Perceptron($\mathcal{D} = \{(\mathbf{x} \in \mathcal{D}) \mid \mathbf{x} \in \mathcal{D}\}$

2:
$$heta \leftarrow 0$$

3: for
$$i \in \{1, 2, ...\}$$
 do
4: $\hat{y} \leftarrow \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(i)})$
5: if $\hat{y} \neq y^{(i)}$ then
6: $\boldsymbol{\theta} \neq \boldsymbol{\theta} + \boldsymbol{\theta}^{(i)}$

$$\hat{y}$$

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y^{(i)} \mathbf{x}^{(i)}$$

return θ

behavior as our "add on positive mistake and subtract on negative mistake" version, because y⁽ⁱ⁾ takes care of the sign

> Initialize parameters ▷ For each example ▷ Predict ▷ If mistake Update parameters

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON($\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$) $oldsymbol{ heta} \leftarrow \mathbf{0}$ ▷ Initialize parameters 2: while not converged do 3: for $i \in \{1, 2, ..., N\}$ do ▷ For each example 4: $\hat{y} \leftarrow \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(i)})$ ▷ Predict 5: if $\hat{y} \neq y^{(i)}$ then ▷ If mistake 6: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}$ Update parameters 7:

8: return θ

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Discussion:

The Batch Perceptron Algorithm can be derived in two ways.

- 1. By extending the online Perceptron algorithm to the batch setting (as mentioned above)
- 2. By applying **Stochastic Gradient Descent (SGD)** to minimize a so-called **Hinge Loss** on a linear separator

Extensions of Perceptron

Voted Perceptron

- generalizes better than (standard) perceptron
- memory intensive (keeps around every weight vector seen during training, so each one can vote)

Averaged Perceptron

- empirically similar performance to voted perceptron
- can be implemented in a memory efficient way (running averages are efficient)

Kernel Perceptron

- Choose a kernel K(x', x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple

Structured Perceptron

- Basic idea can also be applied when y ranges over an exponentially large set
- Mistake bound **does not** depend on the size of that set

Perceptron Exercises

Question:

The parameter vector **w** learned by the Perceptron algorithm can be **written as a linear combination** of the feature vectors $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}$.

- A. True, if you replace "linear" with "polynomial" above
- B. True, for all datasets
- C. False, for all datasets
- D. True, but only for certain datasets
- E. False, but only for certain datasets

PERCEPTRON MISTAKE BOUND

Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will **converge** in a finite # of steps.