

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression

Matt Gormley Lecture 7 Feb. 7, 2021

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Fri, Feb. 4
 - Due: Fri, Feb. 11 at 11:59pm
 - (only two grace/late days permitted)

Q: How do we build Decision Trees with real-valued features?

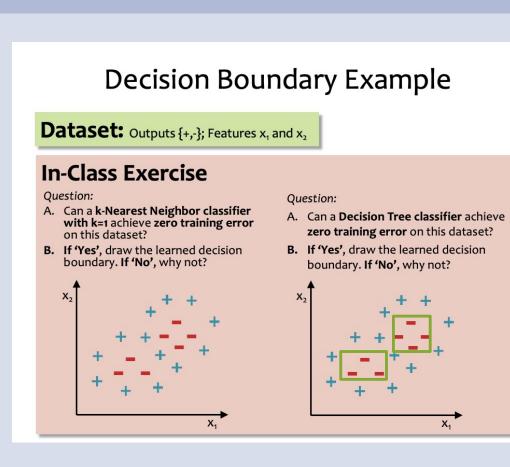
- A: Great question! I'm going to make a 5 minute video about that.
- **Q:** Is there a more formal statement of the Perceptron Mistake Bound?
- A: Great question! I'm going to make a 10 minute video about that.
- **Q:** How do we prove the Perceptron Mistake Bound?
- A: Great question! I'm going to make a 10 minute video about that *and* we'll cover it in Recitation.

DECISION TREES WITH REAL-VALUED FEATURES

Q&A

Q: How do we learn a Decision Tree with realvalued features?

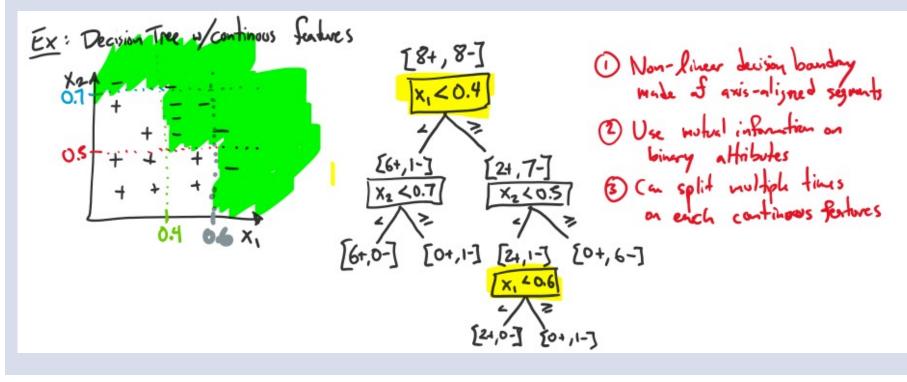
A:



Q&A

Q: How do we learn a Decision Tree with realvalued features?

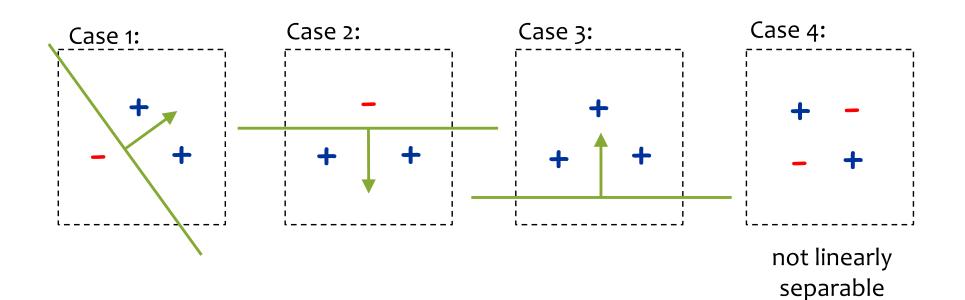
A: Make new discrete features out of the real-valued features and then learn the Decision Tree as normal! Here's an example...



PERCEPTRON MISTAKE BOUND

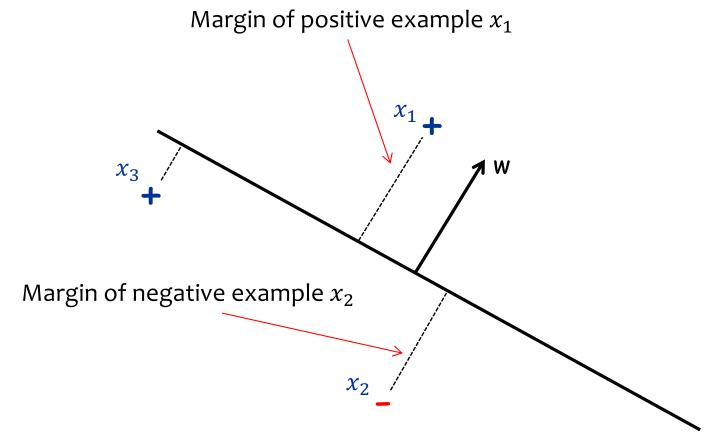
Linear Separability

Def: For a **binary classification** problem, a set of examples *S* is **linearly separable** if there exists a linear decision boundary that can separate the points



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

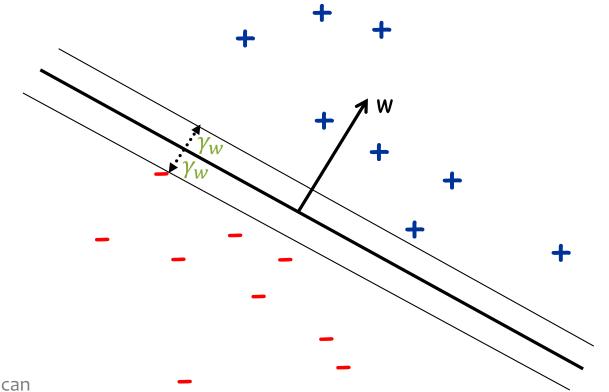


Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side) **Definition:** The margin γ_w of a set of examples S w.r.t. a linear

separator w is the smallest margin over points $x \in S$.



Slide from Nina Balcan

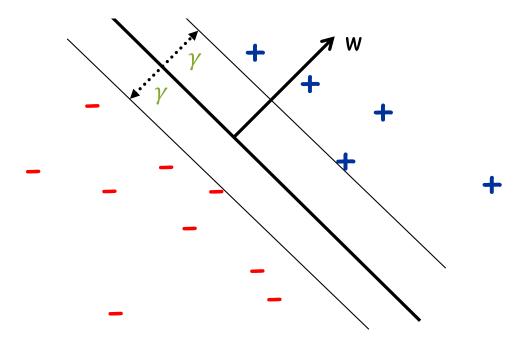
Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples *S* w.r.t. a linear

separator w is the smallest margin over points $x \in S$.

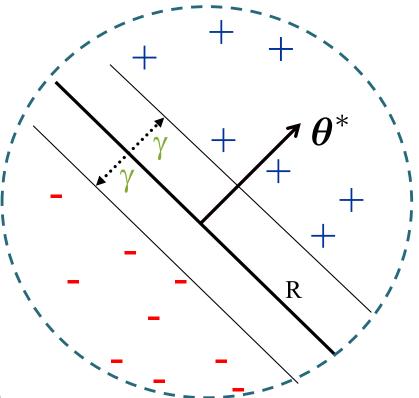
Definition: The margin γ of a set of examples *S* is the maximum γ_w over all linear separators *w*.



Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R rooted at the origin, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)



Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R rooted at the origin, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will **converge** in a finite # of steps.

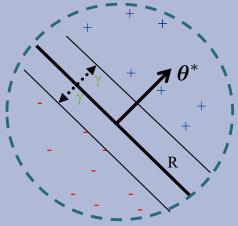
PROOF OF THE MISTAKE BOUND (COVERED IN RECITATION)

Perceptron Mistake Bound Theorem 0.1 (Block (1962), Novikoff (1962)). Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$. Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^* \text{ s.t. } ||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i \text{ and some } \gamma > 0$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$



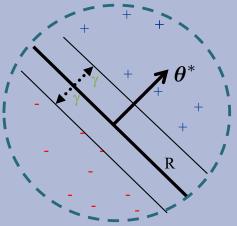
Perceptron Mistake Boun Theorem 0.1 (Block (1962), Novikoff (19 Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$ Suppose:

Common Misunderstanding: The radius is centered at the origin, not at the center of the points.

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^* \text{ s.t. } ||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i \text{ and some } \gamma > 0$

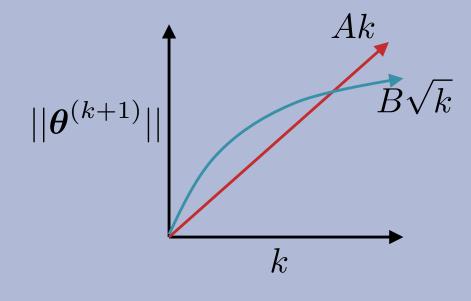
Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$



Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t. $Ak \leq || \theta^{(k+1)} || \leq B\sqrt{k}$



Theorem 0.1 (Block (1962), Novikoff (1962)). Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$. Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^* \text{ s.t. } ||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i \text{ and some } \gamma > 0$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

$$R$$

$$k \le (R/\gamma)^2$$

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure Perceptron($\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\}$)				
2:	$oldsymbol{ heta} \leftarrow 0, k = 1$	Initialize parameters		
3:	for $i \in \{1,2,\ldots\}$ do	▷ For each example		
4:	if $y^{(i)}(oldsymbol{ heta}^{(k)}\cdot\mathbf{x}^{(i)})\leq 0$ then	⊳ If mistake		
5:	$oldsymbol{ heta}^{(k+1)} \leftarrow oldsymbol{ heta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}$	Update parameters		
6:	$k \leftarrow k+1$			
7:	return θ			

Proof of Perceptron Mistake Bound: Part 1: for some A, $Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$ $\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + \boldsymbol{y}^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$ by Perceptron algorithm update $=\boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$ $> \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$ by assumption $\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* > k\gamma$ by induction on k since $\theta^{(1)} = \mathbf{0}$ $\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| > k\gamma$ since $||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$ and $||\theta^*|| = 1$ **Cauchy-Schwartz inequality**

Proof of Perceptron Mistake Bound: Part 2: for some B, $||\boldsymbol{\theta}^{(k+1)}|| < B\sqrt{k}$ $||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$ by Perceptron algorithm update $= ||\boldsymbol{\theta}^{(k)}||^{2} + (y^{(i)})^{2}||\mathbf{x}^{(i)}||^{2} + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$ $< ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2 ||\mathbf{x}^{(i)}||^2$ since kth mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) < 0$ $= || \boldsymbol{\theta}^{(k)} ||^2 + R^2$ since $(y^{(i)})^2 ||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$ $\Rightarrow || \boldsymbol{\theta}^{(k+1)} ||^2 < kR^2$ by induction on k since $(\theta^{(1)})^2 = 0$ $\Rightarrow || \boldsymbol{\theta}^{(k+1)} || < \sqrt{kR}$

Proof of Perceptron Mistake Bound: Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

What if the data is not linearly separable?

- 1. Perceptron will **not converge** in this case (it can't!)
- 2. However, Freund & Schapire (1999) show that by projecting the points (hypothetically) into a higher dimensional space, we can achieve a similar bound on the number of mistakes made on **one pass** through the sequence of examples

Theorem 2. Let $\langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $||\mathbf{x}_i|| \le R$. Let **u** be any vector with $||\mathbf{u}|| = 1$ and let $\gamma > 0$. Define the deviation of each example as

$$d_i = \max\{0, \gamma - y_i(\mathbf{u} \cdot \mathbf{x}_i)\},\$$

and define $D = \sqrt{\sum_{i=1}^{m} d_i^2}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$\left(\frac{R+D}{\gamma}\right)^2$$

Perceptron Exercise

Question:

Unlike Decision Trees and K-Nearest Neighbors, the Perceptron algorithm **does not suffer from overfitting** because it does not have any hyperparameters that could be over-tuned on the training data.

- A. True
- B. False
- C. True and False

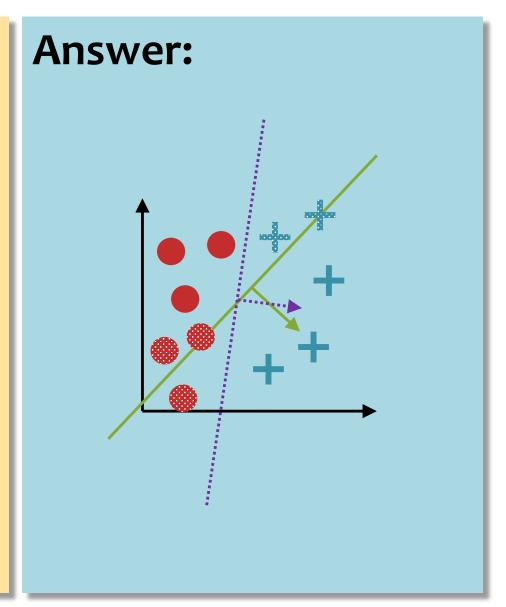
Answer:

Perceptron Exercise

Question:

Unlike Decision Trees and K-Nearest Neighbors, the Perceptron algorithm **does not suffer from overfitting** because it does not have any hyperparameters that could be over-tuned on the training data.

- A. True
- B. False
- C. True and False



Summary: Perceptron

- Perceptron is a **linear classifier**
- Simple learning algorithm: when a mistake is made, add / subtract the features
- Perceptron will converge if the data are linearly separable, it will not converge if the data are linearly inseparable
- For linearly separable and inseparable data, we can **bound the number of mistakes** (geometric argument)
- Extensions support nonlinear separators and structured prediction

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron

REGRESSION

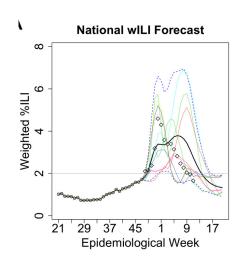
Regression

Goal:

- Given a training dataset of pairs (x,y) where
 - **x** is a vector
 - y is a scalar
- Learn a function (aka. curve or line) y' = h(x) that best fits the training data

Example Applications:

- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)



Regression

Х

Example: Dataset with only one feature x and one scalar output y

y

Q: What is the function that best fits these points?

K-NEAREST NEIGHBOR REGRESSION

k-NN Regression

Х

Example: Dataset with only one feature x and one scalar output y

y

Algorithm 1: k=1 Nearest Neighbor Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances x⁽ⁿ¹⁾ and x⁽ⁿ²⁾ in training data and return the weighted average of their y values

k-NN Regression

Х

Example: Dataset with only one feature x and one scalar output y

Algorithm 1: drawing the function is left as an exercise

y

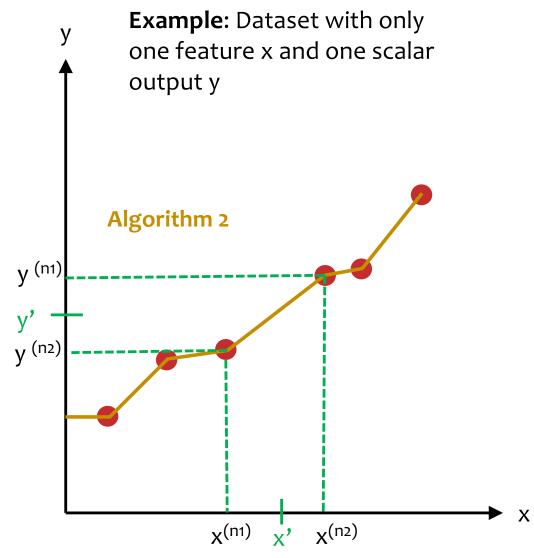
Algorithm 1: k=1 Nearest **Neighbor Regression**

- Train: store all (x, y) pairs
- *Predict*: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest **Neighbors Distance Weighted** Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest • two instances $x^{(n1)}$ and $x^{(n2)}$ in training data and return the weighted average of their y values

k-NN Regression



Algorithm 1: k=1 Nearest Neighbor Regression

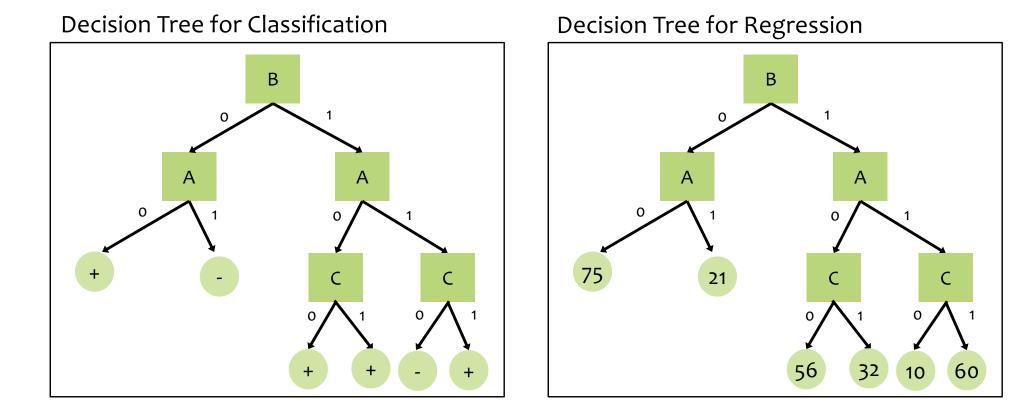
- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances x⁽ⁿ¹⁾ and x⁽ⁿ²⁾ in training data and return the weighted average of their y values

DECISION TREE REGRESSION

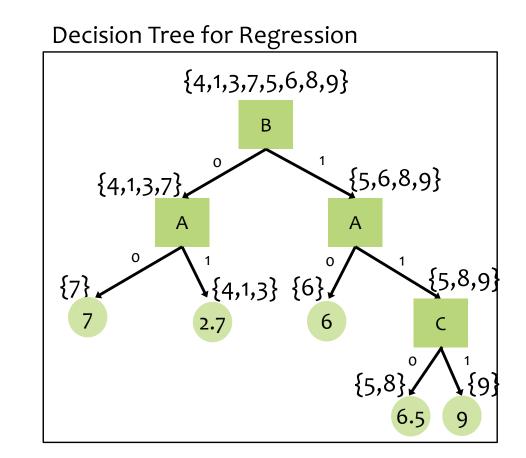
Decision Tree Regression



Decision Tree Regression

Dataset for Regression

Y	Α	В	С
4	1	0	0
1	1	0	1
3	1	0	0
7	0	0	1
5	1	1	0
6	0	1	1
8	1	1	0
9	1	1	1



During learning, choose the attribute that minimizes an appropriate splitting criterion (e.g. mean squared error, mean absolute error)

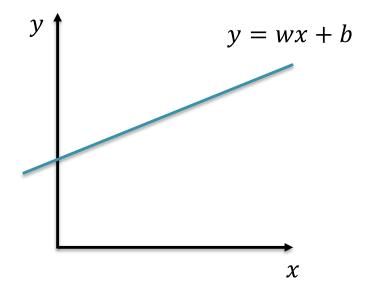
LINEAR FUNCTIONS, RESIDUALS, AND MEAN SQUARED ERROR

Linear Functions

<u>Def</u>: Regression is predicting real-valued outputs

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{n}$$
 with $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$, $y^{(i)} \in \mathbb{R}$

Common Misunderstanding: Linear functions \neq Linear decision boundaries

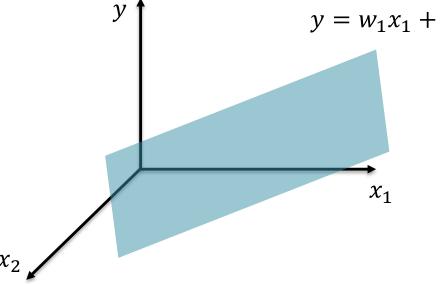


Linear Functions

<u>Def</u>: Regression is predicting real-valued outputs

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{n}$$
 with $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$, $y^{(i)} \in \mathbb{R}$

Common Misunderstanding: Linear functions \neq Linear decision boundaries



 $y = w_1 x_1 + w_2 x_2 + b$

- A general linear function is $y = \mathbf{w}^T \mathbf{x} + b$
- A general linear decision boundary is $y = \operatorname{sign}(\mathbf{w}^T\mathbf{x} + b)$

Regression Problems

Chalkboard

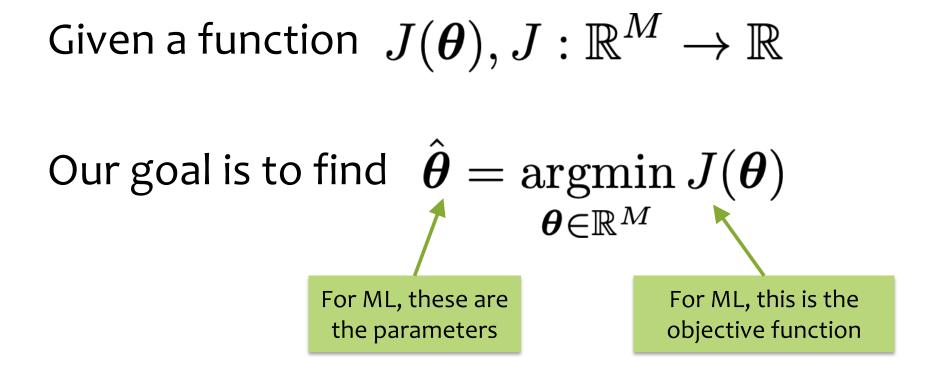
- Residuals
- Mean squared error

The Big Picture

OPTIMIZATION FOR ML

Unconstrained Optimization

• Def: In **unconstrained optimization**, we try minimize (or maximize) a function with *no* constraints on the inputs to the function

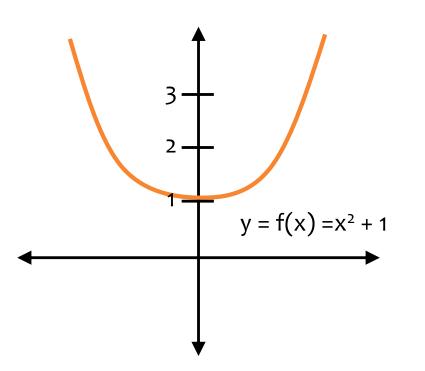


Optimization for ML

Not quite the same setting as other fields...

- Function we are optimizing might not be the true goal
 - (e.g. likelihood vs generalization error)
- Precision might not matter
 (e.g. data is noisy, so optimal up to 1e-16 might not help)
- Stopping early can help generalization error (i.e. "early stopping" is a technique for regularization – discussed more next time)

min vs. argmin

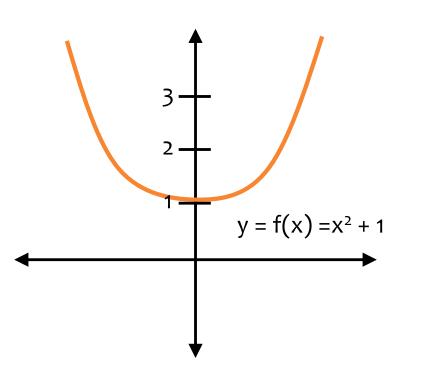


 $v^* = min_x f(x)$ $x^* = argmin_x f(x)$

1. Q: What is v*?

2. Q: What is x*?

min vs. argmin



 $v^* = \min_x f(x)$ $x^* = \operatorname{argmin}_x f(x)$

1. Q: What is v*?

 $v^* = 1$, the minimum value of the function

2. Q: What is x*?

x* = 0, the argument that yields the minimum value

OPTIMIZATION METHOD #0: RANDOM GUESSING

Notation Trick: Folding in the Intercept Term

$$\mathbf{x}' = [1, x_1, x_2, \dots, x_M]^T$$
$$\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$$

Notation Trick: fold the bias b and the weights w into a single vector $\boldsymbol{\Theta}$ by prepending a constant to x and increasing dimensionality by one!

$$h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
$$h_{\boldsymbol{\theta}}(\mathbf{x}') = \boldsymbol{\theta}^T \mathbf{x}'$$

This convenience trick allows us to more compactly talk about linear functions as a simple dot product (without explicitly writing out the intercept term every time).

1. Assume \mathcal{D} generated as:

 $\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: *mean squared error (MSE)*

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

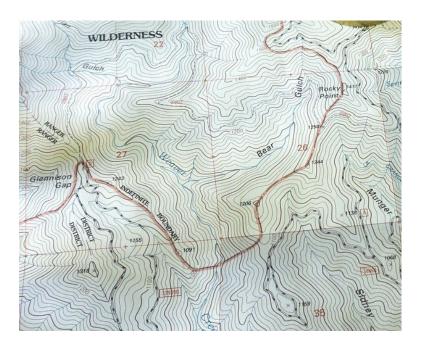
5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{oldsymbol{ heta}}}(\mathbf{x}) = \hat{oldsymbol{ heta}}^T \mathbf{x}$$

Contour Plots

Contour Plots

- Each level curve labeled 1. with value
- Value label indicates the 2. value of the function for all points lying on that level curvé
- Just like a topographical map, but for a function 3.



 $J(\mathbf{\theta}) = J(\theta_1, \theta_2) = (10(\theta_1 - 0.5))^2 + (6(\theta_1 - 0.4))^2$ 1.0 000.00 30,000 10.000 0.8 -15.000 15.000 20.000 0.6 20.000 000 θ_2 0.4 5.000 . 0.2 0.0 -0.6 0.0 0.2 0.4

 θ_1

1.0

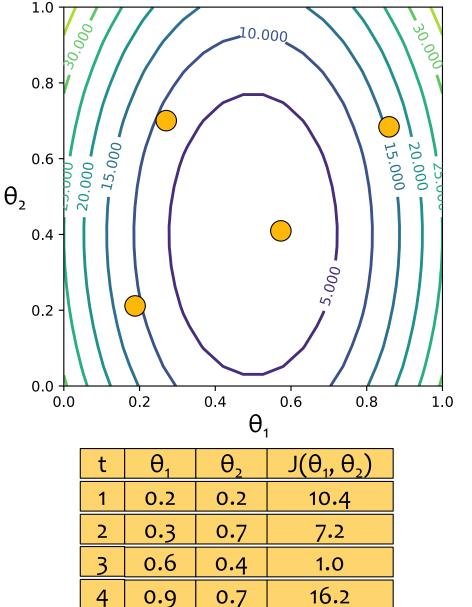
0.8

Optimization by Random Guessing

Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- Return θ that gives smallest J(θ)

 $J(\mathbf{\theta}) = J(\theta_1, \theta_2) = (10(\theta_1 - 0.5))^2 + (6(\theta_1 - 0.4))^2$



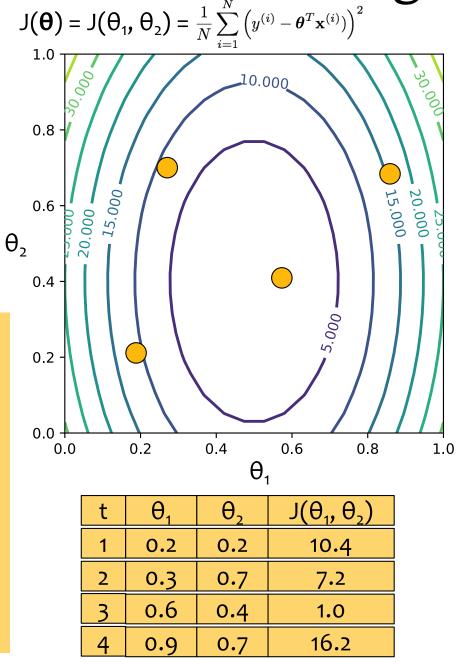
Optimization by Random Guessing

Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- 4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

For Linear Regression:

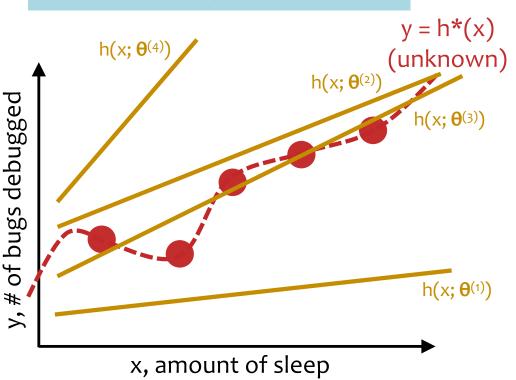
- **objective function** is Mean Squared Error (MSE)
- MSE = J(w, b) = J(θ_1 , θ_2) = $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$
- contour plot: each line labeled with MSE – lower means a better fit
- minimum corresponds to parameters (w,b) = (θ₁, θ₂) that best fit some training dataset



Linear Regression by Rand. Guessing

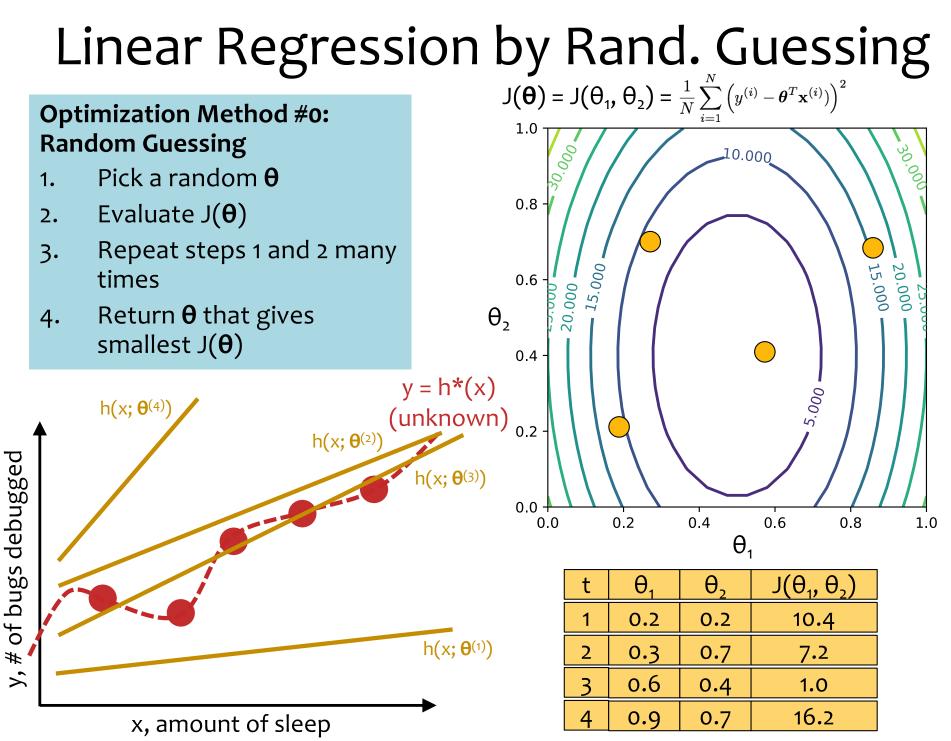
Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- 4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)



For Linear Regression:

- target function h*(x) is unknown
- only have access to h*(x) through training examples (x⁽ⁱ⁾,y⁽ⁱ⁾)
- want h(x; θ^(t)) that best approximates h*(x)
- enable generalization w/inductive bias that restricts hypothesis class to linear functions



OPTIMIZATION METHOD #1: GRADIENT DESCENT

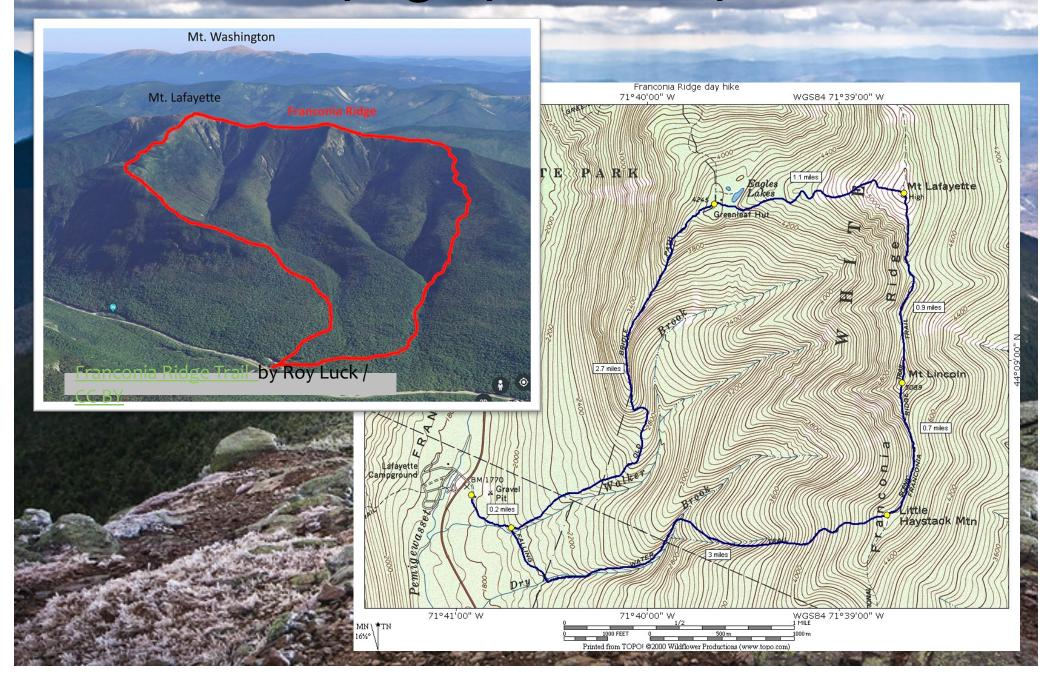
Optimization for ML

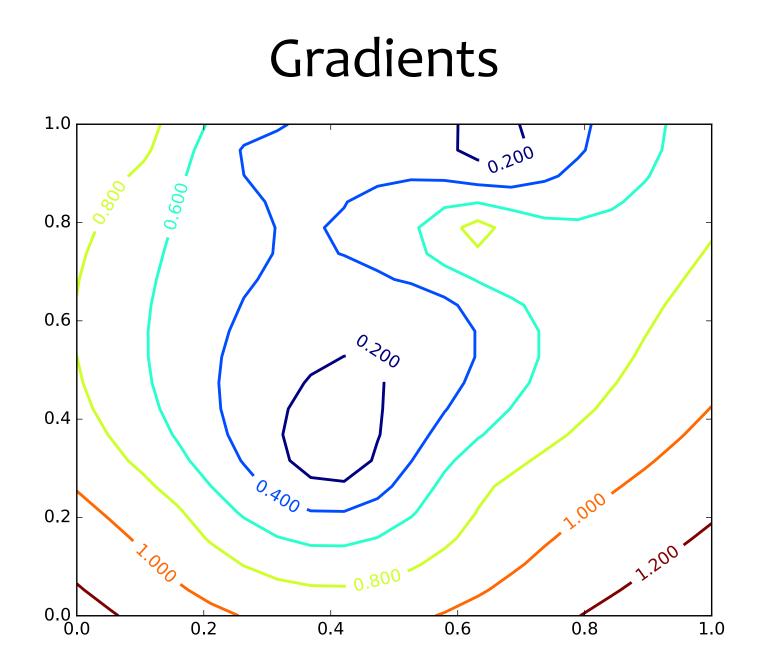
Chalkboard

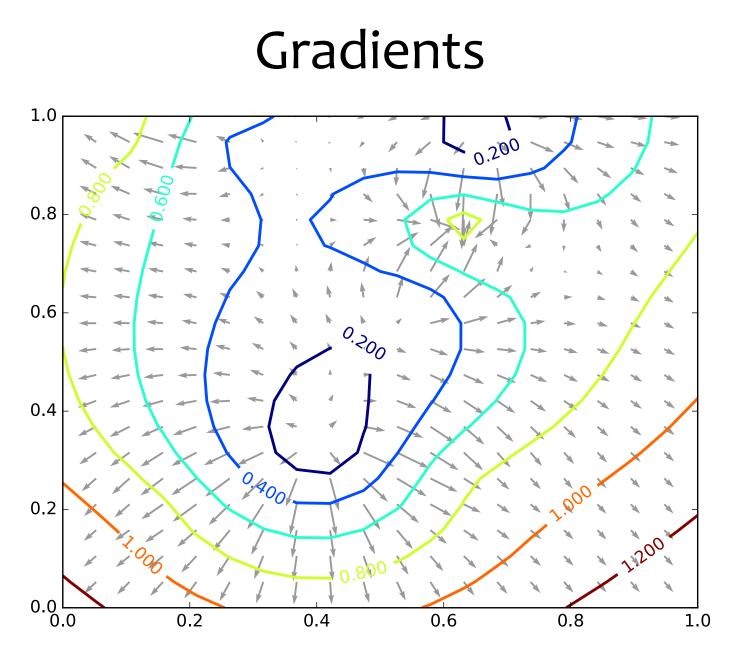
- Derivatives
- Gradient

Topographical Maps

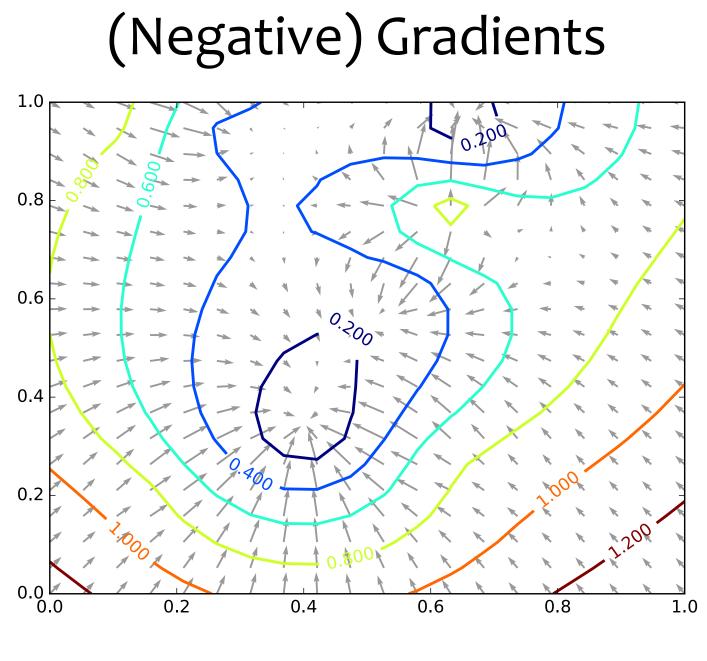
Topographical Maps





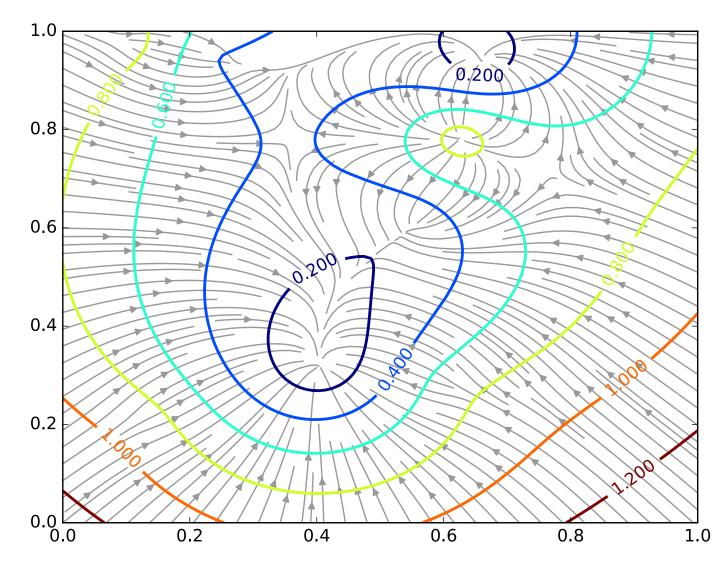


These are the **gradients** that Gradient **Ascent** would follow.



These are the **negative** gradients that Gradient **Descent** would follow.

(Negative) Gradient Paths



Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Gradient Descent

Chalkboard

- Gradient Descent Algorithm
- Details: starting point, stopping criterion, line search

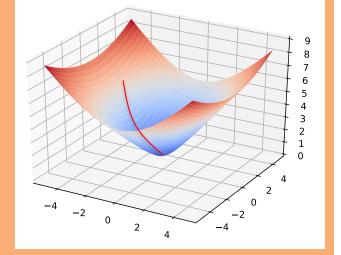
Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$

5: return θ



In order to apply GD to Linear Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

$$\begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix}$$

 $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) =$

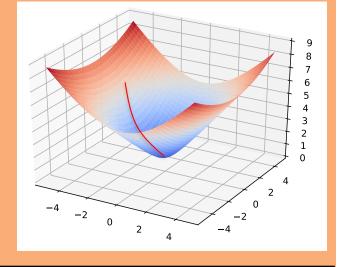
Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\gamma} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ



There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

 $||\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})||_2 \leq \epsilon$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

1. Assume \mathcal{D} generated as:

 $\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: *mean squared error (MSE)*

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

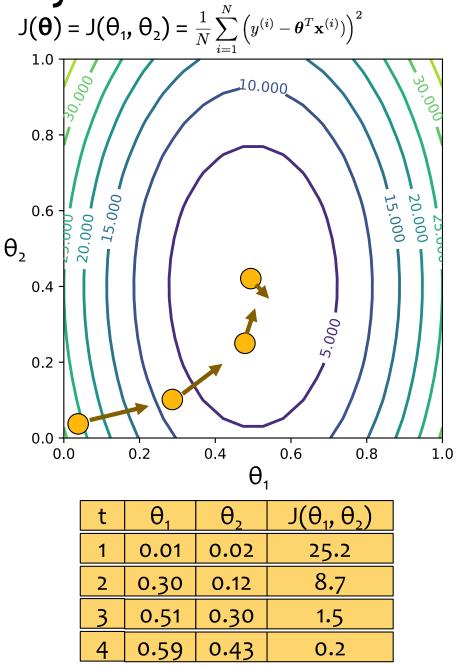
5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{oldsymbol{ heta}}}(\mathbf{x}) = {\hat{oldsymbol{ heta}}}^T \mathbf{x}$$

Linear Regression by Gradient Desc. $J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)})^2$

Optimization Method #1: Gradient Descent

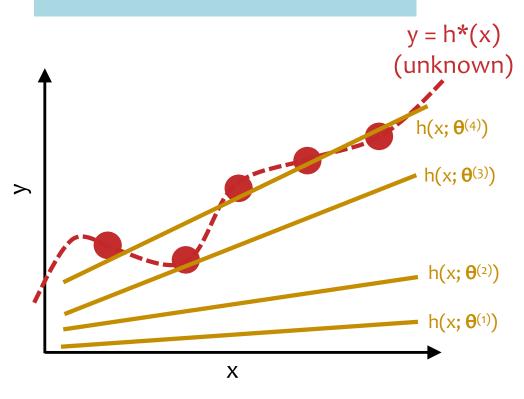
- 1. Pick a random θ
- 2. Repeat:
 a. Evaluate gradient ∇J(θ)
 b. Step opposite gradient
- Return θ that gives smallest J(θ)



Linear Regression by Gradient Desc.

Optimization Method #1: Gradient Descent

- 1. Pick a random θ
- 2. Repeat:
 a. Evaluate gradient ∇J(θ)
 b. Step opposite gradient
- Return θ that gives smallest J(θ)



t	θ	θ2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc. $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

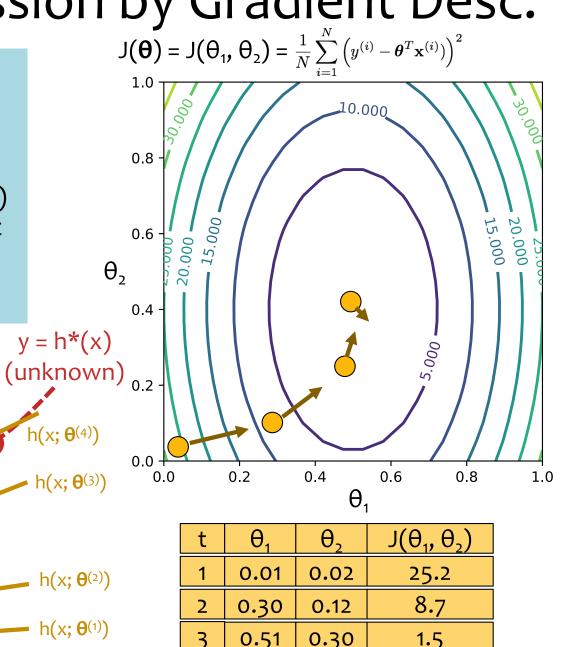
Optimization Method #1: Gradient Descent

- 1. Pick a random θ
- 2. Repeat:
 a. Evaluate gradient ∇J(θ)
 b. Step opposite gradient

Х

3. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

>



4

0.59

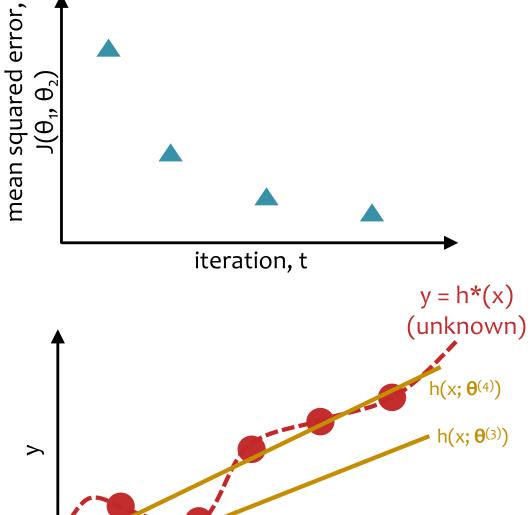
0.43

0.2

Linear Regression by Gradient Desc.

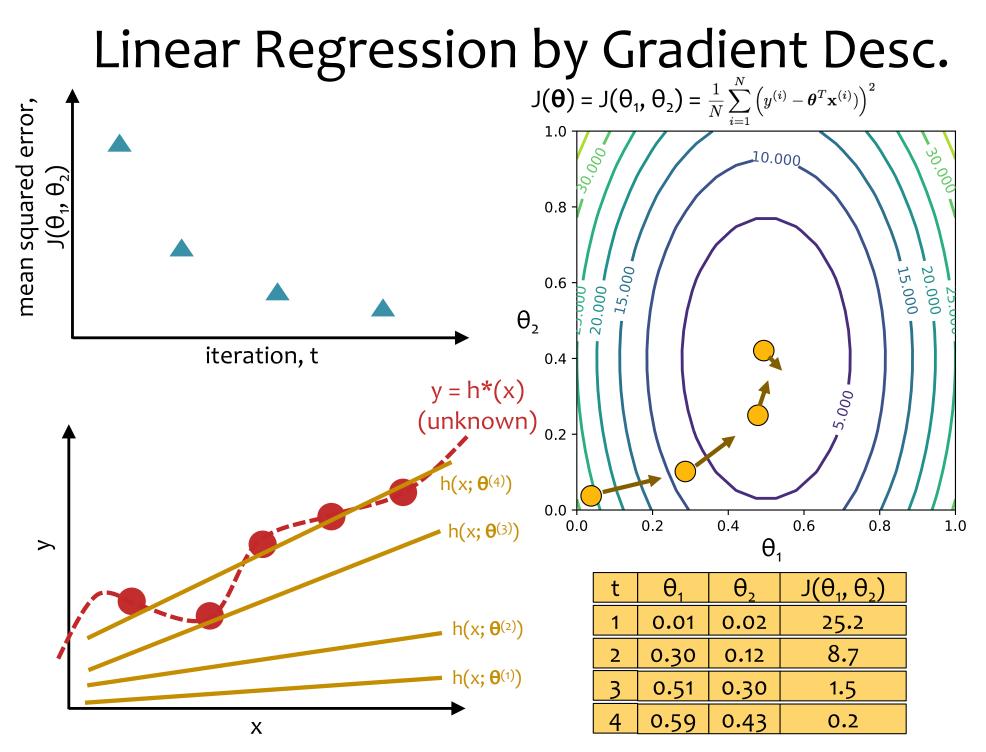
h(x; $\theta^{(2)}$)

h(x; **θ**⁽¹⁾)



Х

t	θ_1	θ2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2



Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression

Gradient Calculation for Linear Regression

Derivative of
$$J^{(i)}(\boldsymbol{\theta})$$
:

$$\frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right)^2$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)}$$

Derivative of $J(\boldsymbol{\theta})$:

$$\begin{aligned} \frac{d}{d\theta_k} J(\boldsymbol{\theta}) &= \sum_{i=1}^N \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) \\ &= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{aligned}$$

Gradient of
$$J(\boldsymbol{\theta})$$
 [used by Gradient Descent]

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} \end{bmatrix}$$

$$= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

