

### 10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

# Linear Regression + Optimization for ML

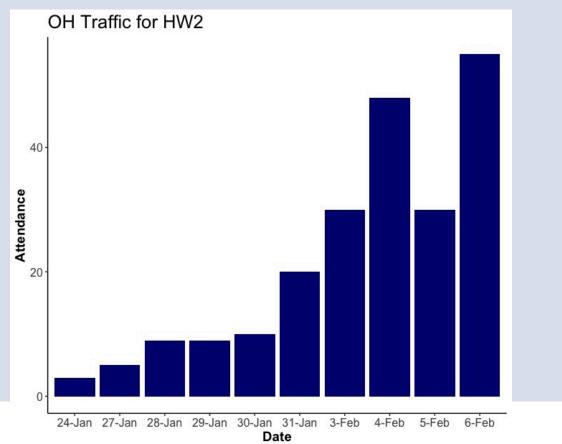
Matt Gormley Lecture 8 Feb. 11, 2022

**Q:** Could we just get rid of that pesky step size hyperparameter  $\mathbf{y}^{(t)}$  in gradient descent?

**A:** No!

In order to **prove** that gradient descent converges to a local minimum of a function, we need to **assume** gamma is properly defined.

- **Q:** How can I get more one-on-one interaction with the course staff?
- A: Attend office hours as soon after the homework release as possible!



**Q:** Can I email, tweeter, instasnap, or facetok my favorite TA directly about the course?

- A: No. All course communication should be directed through one of the following channels:
  - Piazza (public post)
  - Piazza (private instructor post)
  - Email to EAs <u>eas-10-601@cs.cmu.edu</u>
  - Email to Matt (delays likely)
  - In-person communication at OHs

**Q:** I just asked a question in OH and now my TA is crying quietly -- what did I do wrong?

A: You've just committed the worst of crimes: asking a question that was directly answered in a recitation.

The TA you asked spent hours carefully writing careful recitation notes and solutions, practicing their recitation, responding to criticism / changes from me, etc.

To increase OH efficiency, please review the HW recitation before asking HW questions in OHs.

### Reminders

- Practice for Exam 1
  - Mock Exam 1
    - Due: Wed, Feb. 16 at 11:59pm
    - See <u>@683</u> for participation point details
  - Practice Problems 1 released on course website
- Exam 1: Thu, Feb. 17
  - Time: 6:30 8:30pm
  - Location: Your room/seat assignment will be announced on Piazza

### EXAM 1 LOGISTICS

### Exam 1

- Time / Location
  - Time: Thu, Feb 17, at 6:30pm 8:30pm
  - Location & Seats: You have all been split across multiple rooms. Everyone has an assigned seat in one of these room.
  - Please watch Piazza carefully for announcements.

### Logistics

- Covered material: Lecture 1 Lecture 7
- Format of questions:
  - Multiple choice
  - True / False (with justification)
  - Derivations
  - Short answers
  - Interpreting figures
  - Implementing algorithms on paper

### Exam 1

### How to Prepare

- Attend the midterm review lecture (right now!)
- Participate in the Mock Exam
- Review exam practice problems
- Review this year's homework problems
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)

### Midterm Exam

- Advice (for during the exam)
  - Solve the easy problems first
     (e.g. multiple choice before derivations)
    - if a problem seems extremely complicated you're likely missing something
  - Don't leave any answer blank!
  - If you make an assumption, write it down
  - If you look at a question and don't know the answer:
    - we probably haven't told you the answer
    - but we've told you enough to work it out
    - imagine arguing for some answer and see if you like it

# Topics for Exam 1

- Foundations
  - Probability, Linear
     Algebra, Geometry,
     Calculus
  - Optimization
- Important Concepts
  - Overfitting
  - Experimental Design

- Classification
  - Decision Tree
  - KNN
  - Perceptron
- Regression
  - KNN Regression
  - Decision TreeRegression
  - Linear Regression

## SAMPLE QUESTIONS

#### 5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

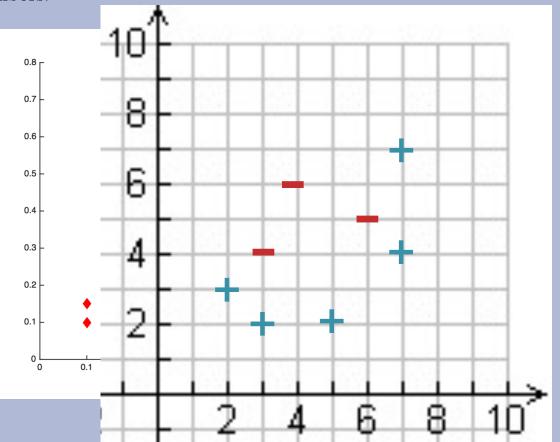
| Snowstorm | Holiday      | Weekend      | Closed       |
|-----------|--------------|--------------|--------------|
| Т         | Т            | F            | F            |
| T         | Т            | $\mathbf{F}$ | Т            |
| F         | Т            | $\mathbf{F}$ | $\mathbf{F}$ |
| T         | Т            | $\mathbf{F}$ | F            |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{F}$ |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | Т            |
| Т         | $\mathbf{F}$ | F            | Т            |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | Т            |

Table 1: Training examples for decision tree

- [2 points] What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain in terms of information gain.
- [8 points] If we cannot make Weekend the root node, which attribute should be made the root node of the decision tree? Explain your reasoning and show your calculations. (You may use  $\log_2 0.75 = -0.4$  and  $\log_2 0.25 = -2$ )

### 4 K-NN [12 pts]

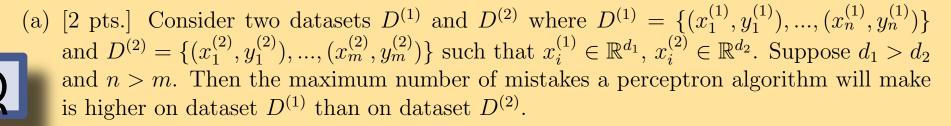
Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors.



3. [2 pts] What is the N-fold cross-validation error for the dataset shown in Figure 5? Assume k=1.

#### 4.1 True or False

Answer each of the following questions with **T** or **F** and **provide a one line justification**.



#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |

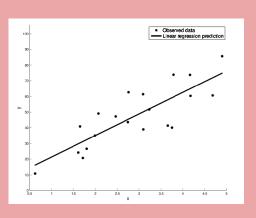


Figure 1: An observed data set and its associated regression line.

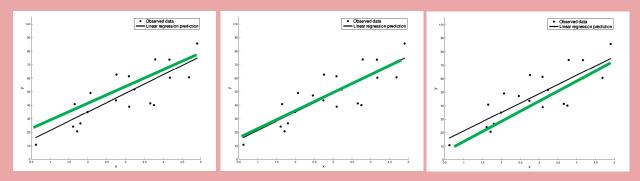
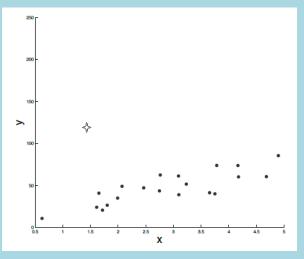


Figure 2: New regression lines for altered data sets  $S^{\text{new}}$ .

#### Dataset



(a) Adding one outlier to the original data set.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |

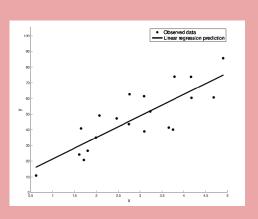
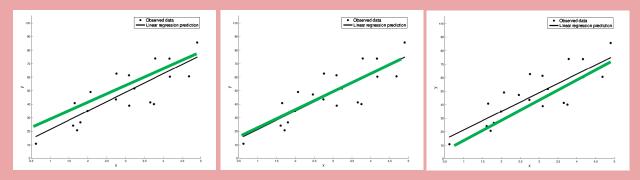
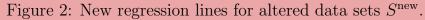


Figure 1: An observed data set and its associated regression line.





Dataset

(c) Adding three outliers to the original data set. Two on one side and one on the other side.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |

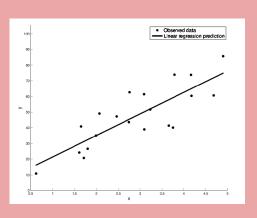
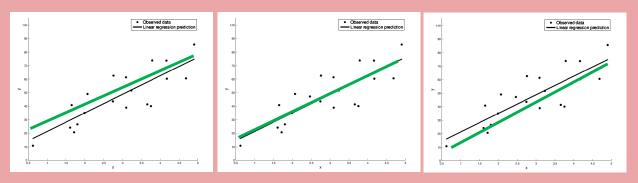
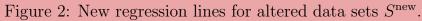
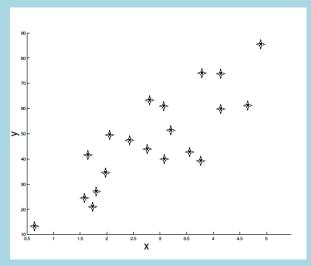


Figure 1: An observed data set and its associated regression line.





#### Dataset



(d) Duplicating the original data set.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |

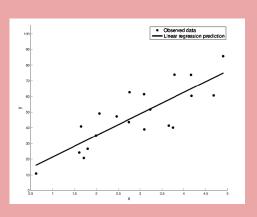


Figure 1: An observed data set and its associated regression line.

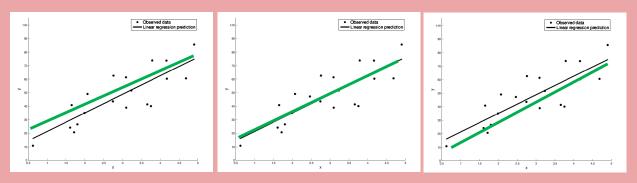
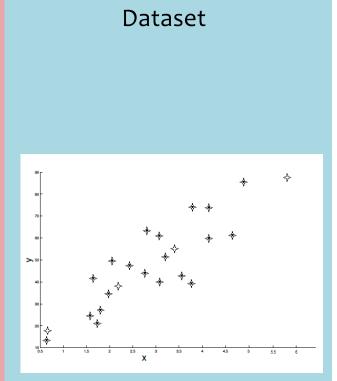


Figure 2: New regression lines for altered data sets  $S^{\text{new}}$ .



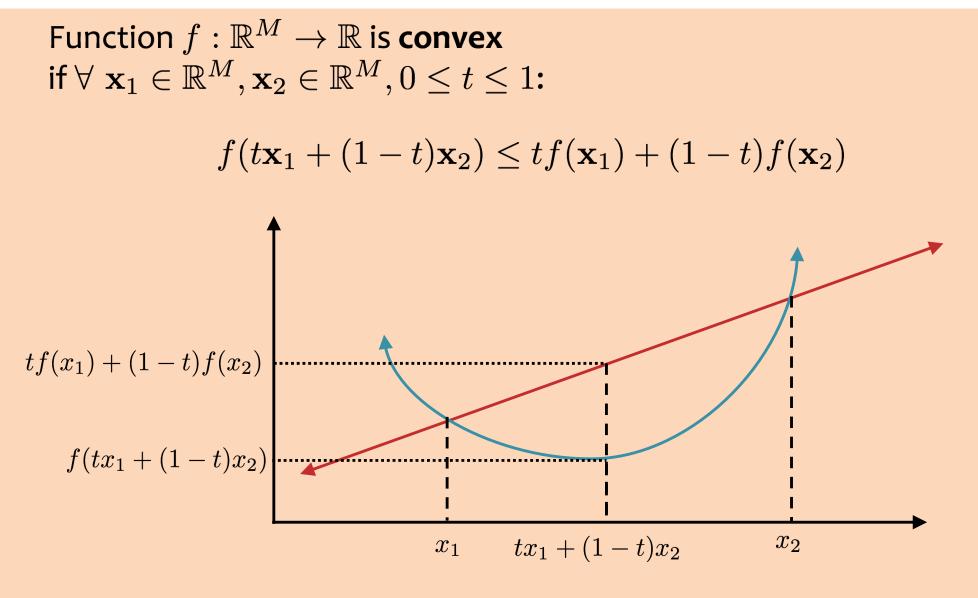
(e) Duplicating the original data set and adding four points that lie on the trajectory of the original regression line.

22



### CONVEXITY

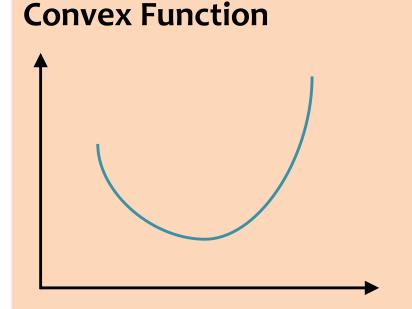
### Convexity



### Convexity

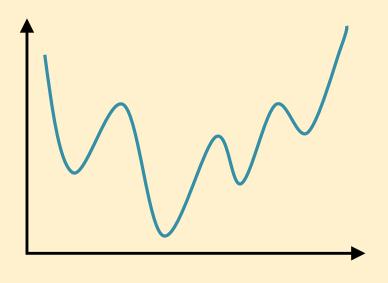
Suppose we have a function  $f(x) : \mathcal{X} \to \mathcal{Y}$ .

- The value  $x^*$  is a **global minimum** of f iff  $f(x^*) \leq f(x), \forall x \in \mathcal{X}$ .
- The value  $x^*$  is a **local minimum** of f iff  $\exists \epsilon$  s.t.  $f(x^*) \leq f(x), \forall x \in [x^* \epsilon, x^* + \epsilon]$ .



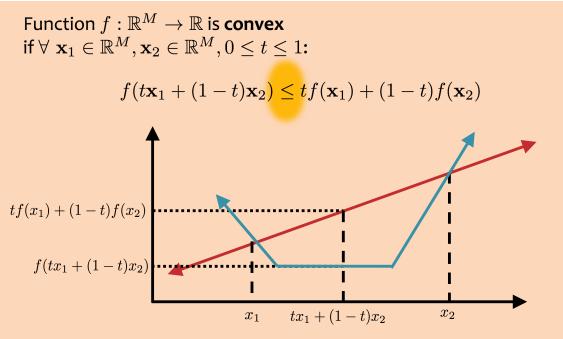
 Each local minimum is a global minimum

### **Nonconvex Function**



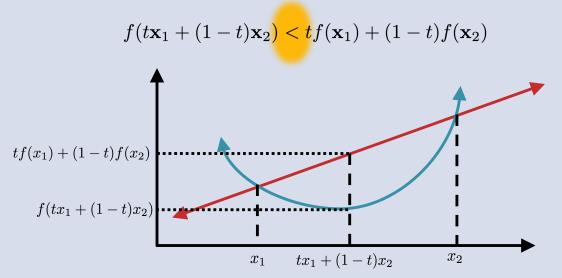
- A nonconvex function is not convex
- Each **local minimum** is **not** necessarily a **global minimum**

### Convexity



Each local minimum of a convex function is also a global minimum.

Function  $f : \mathbb{R}^M \to \mathbb{R}$  is strictly convex if  $\forall \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \le t \le 1$ :



A strictly convex function has a unique global minimum.

## CONVEXITY AND LINEAR REGRESSION

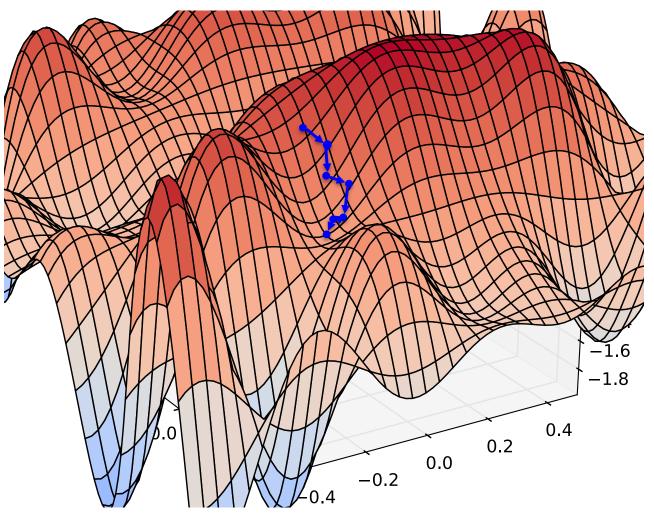
### Convexity and Linear Regression

The Mean Squared Error function, which we minimize for learning the parameters of Linear Regression, is convex!

... but in the general case it is **not** strictly convex.

### Gradient Descent & Convexity

- Gradient descent is a local optimization algorithm
- If the function is nonconvex, it will find a local minimum, not necessarily a global minimum
- If the function is convex, it will find a global minimum



### **Regression Loss Functions**

### **In-Class Exercise:**

Which of the following could be used as loss functions for training a linear regression model?

Select all that apply.

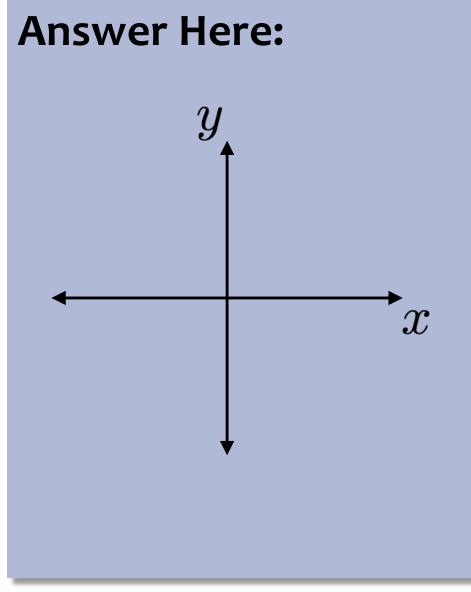
A. 
$$\ell(\hat{y}, y) = ||\hat{y} - y||_2$$
  
B.  $\ell(\hat{y}, y) = |\hat{y} - y|$   
C.  $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$   
D.  $\ell(\hat{y}, y) = \frac{1}{4}(\hat{y} - y)^4$   
E.  $\ell(\hat{y}, y) = \begin{cases} \frac{1}{2}(\hat{y} - y)^2 & \text{if } |\hat{y} - y| \le \delta \\ \delta |\hat{y} - y| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$   
F.  $\ell(\hat{y}, y) = \log(\cosh(\hat{y} - y))$ 

### OPTIMIZATION METHOD #2: CLOSED FORM SOLUTION

### Calculus and Optimization

### In-Class Exercise Plot three functions:

1. 
$$f(x) = x^3 - x$$
  
2.  $f'(x) = \frac{\partial y}{\partial x}$   
3.  $f''(x) = \frac{\partial^2 y}{\partial x^2}$ 



# **Optimization: Closed form solutions**

Chalkboard

- Zero Derivatives
- Example: 1-D function
- Example: higher dimensions

# CLOSED FORM SOLUTION FOR LINEAR REGRESSION

# Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume  $\mathcal{D}$  generated as:

 $\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$ 

2. Choose hypothesis space,  $\mathcal{H}$ : all linear functions in *M*-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: *mean squared error (MSE)* 

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

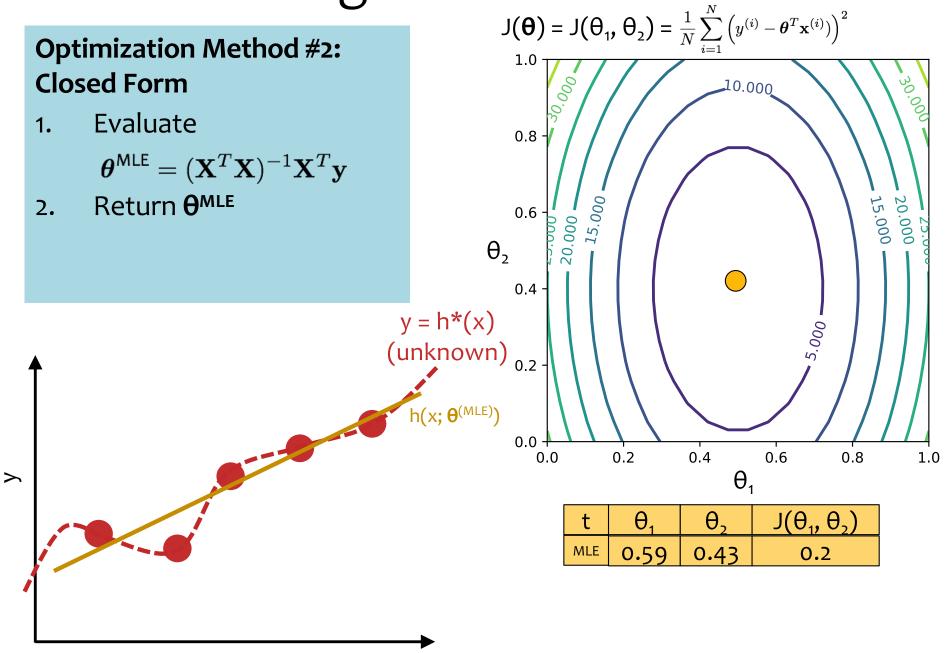
- 4. Solve the unconstrained optimization problem via favorite method:
  - gradient descent
  - closed form
  - stochastic gradient descent
  - . . .

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

5. Test time: given a new x, make prediction  $\hat{y}$ 

$$\hat{y} = h_{\hat{\boldsymbol{ heta}}}(\mathbf{x}) = \hat{\boldsymbol{ heta}}^T \mathbf{x}$$

### Linear Regression: Closed Form



# **Optimization for Linear Regression**

Chalkboard

- Closed-form (Normal Equations)

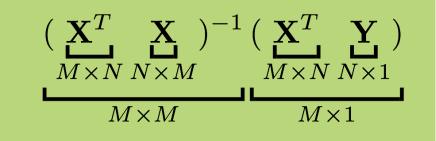
### **COMPUTATIONAL COMPLEXITY**

# Computational Complexity of OLS

To solve the Ordinary Least Squares problem we compute:

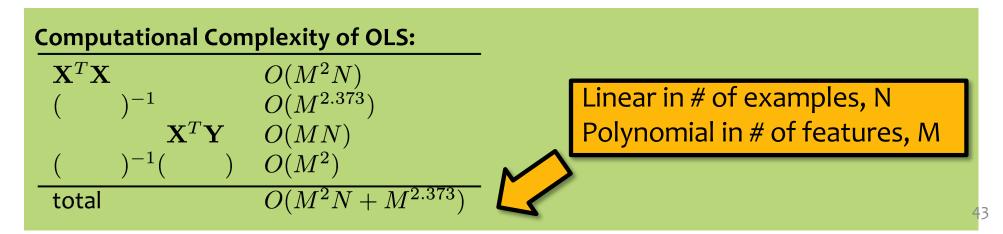
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

The resulting shape of the matrices:



Background: Matrix Multiplication  $% \mathbf{B}$  Given matrices  $\mathbf{A}$  and  $\mathbf{B}$ 

- If A is  $q \times r$  and B is  $r \times s$ , computing AB takes O(qrs)
- If A and B are  $q \times q$ , computing AB takes  $O(q^{2.373})$
- If A is  $q \times q$ , computing  $A^{-1}$  takes  $O(q^{2.373})$ .

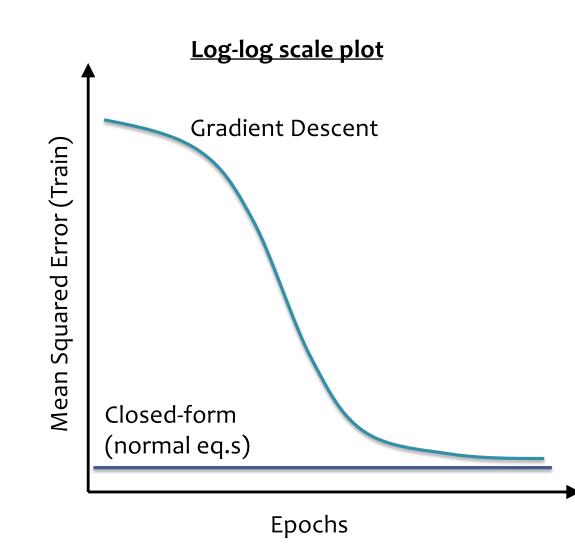


### Gradient Descent

Cases to consider gradient descent:

- 1. What if we **can not** find a closed-form solution?
- 2. What if we **can**, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

# **Empirical Convergence**



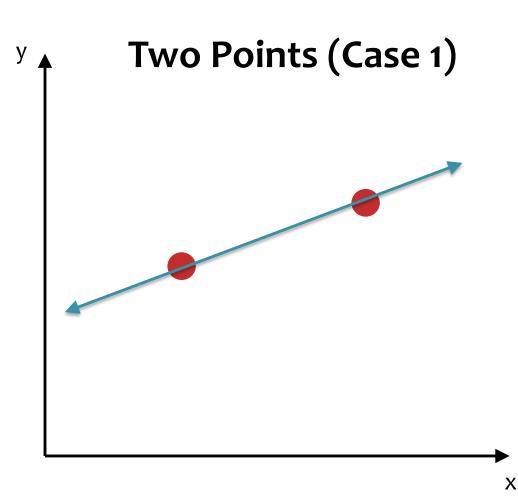
- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- For SGD, N updates
   per epoch
   N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

# LINEAR REGRESSION: SOLUTION UNIQUENESS

#### **Question:**

Consider a 1D linear regression model trained to minimize MSE.

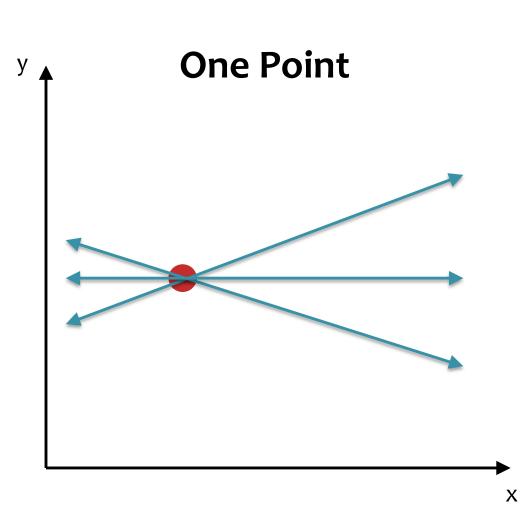
How many solutions (i.e. sets of parameters w,b) are there for the given dataset?



#### **Question:**

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?



#### **Question:**

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

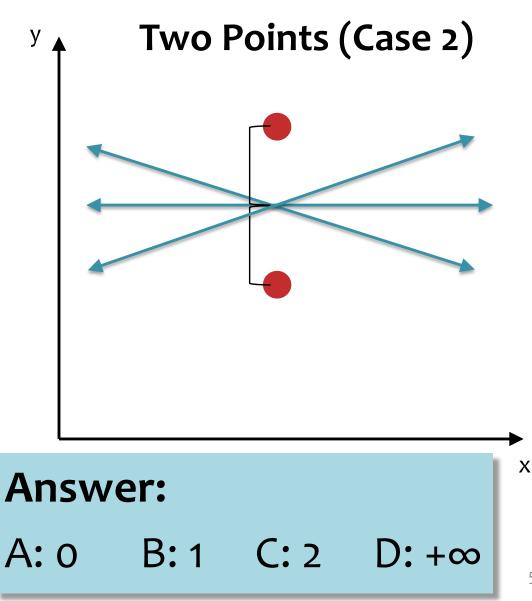
Two Points (Case 2) **Answer:** A: 0 B:1 C:2  $D: +\infty$ 

Х

#### **Question:**

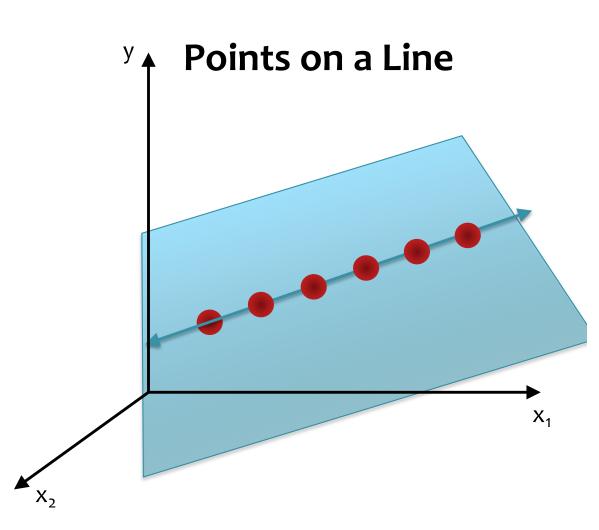
Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?



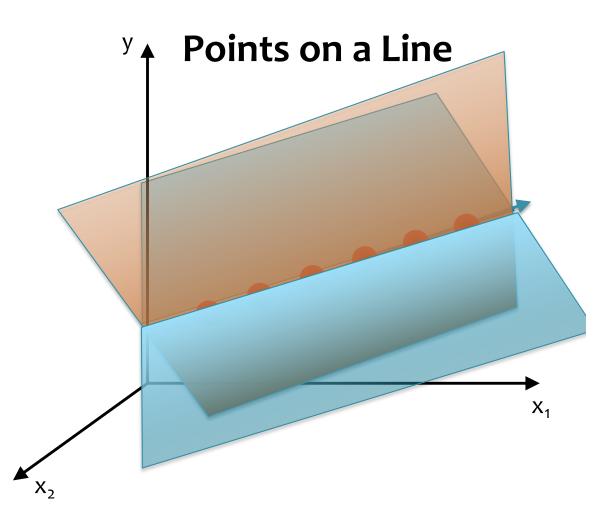
### **Question:**

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w<sub>1</sub>, w<sub>2</sub>, b) are there for the given dataset?



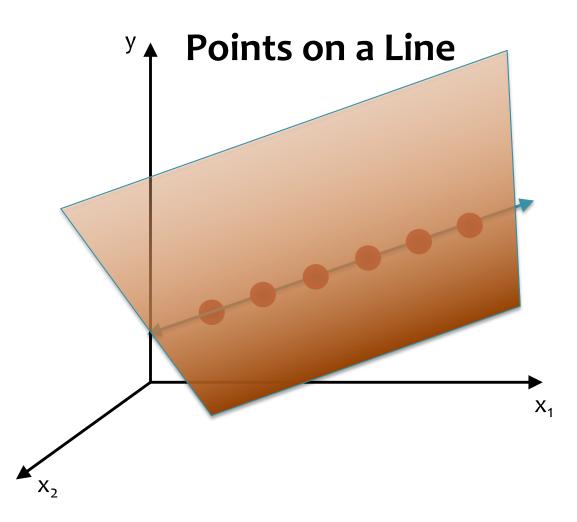
### **Question:**

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w<sub>1</sub>, w<sub>2</sub>, b) are there for the given dataset?



### **Question:**

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w<sub>1</sub>, w<sub>2</sub>, b) are there for the given dataset?



To solve the Ordinary Least Squares problem we compute:  $\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$   $= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$ 

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If  $(\mathbf{X}^T \mathbf{X})$  is invertible, then there is exactly one solution.
- 2. If  $(\mathbf{X}^T \mathbf{X})$  is not invertible, then there are either no solutions or infinitely many solutions.

To solve the Ordinary Least Squares problem we compute:  $\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$  $= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$ 

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If  $(\mathbf{X}^T \mathbf{X})$  is invertible, then there is exactly one solution.
- no solutions or inf

Invertability of  $(\mathbf{X}^T \mathbf{X})$  is 2. If  $(\mathbf{X}^T \mathbf{X})$  is not inverse equivalent to  $\mathbf{X}$  being full rank. That is, there is no feature that is a linear combination of the other features.

# Solving Linear Regression

#### **Question:**

**True or False:** If Mean Squared Error (i.e.  $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h(\mathbf{x}^{(i)}))^2$ ) has a unique minimizer (i.e.  $\operatorname{argmin}$ ), then Mean Absolute Error (i.e.  $\frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - h(\mathbf{x}^{(i)})|$ ) must also have a unique minimizer.

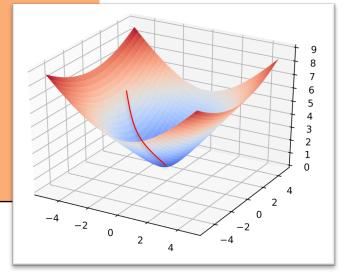
#### **Answer:**

### **OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT**

### Gradient Descent

#### Algorithm 1 Gradient Descent

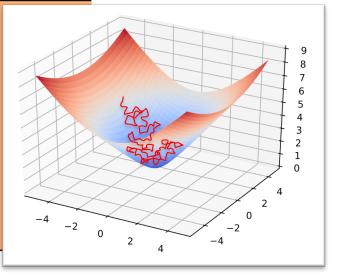
| 1: | procedure $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$                                                              |
|----|---------------------------------------------------------------------------------------------------------------------|
| 2: | $oldsymbol{	heta} \leftarrow oldsymbol{	heta}^{(0)}$                                                                |
| 3: | while not converged do                                                                                              |
| 4: | $oldsymbol{	heta} \leftarrow oldsymbol{	heta} - oldsymbol{\gamma}  abla_{oldsymbol{	heta}} ar{J}(oldsymbol{	heta})$ |
| 5: | $\operatorname{return} \theta$                                                                                      |



# Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(
$$\mathcal{D}, \boldsymbol{\theta}^{(0)}$$
)  
2:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$   
3: while not converged do  
4:  $i \sim \text{Uniform}(\{1, 2, \dots, N\})$   
5:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$   
6: return  $\boldsymbol{\theta}$ 



per-example objective:  $J^{(i)}(\theta)$ original objective:  $J(\theta) = \sum_{i=1}^{N} J^{(i)}(\theta)$