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Reminders

* Homework 4: Logistic Regression
— Out: Fri, Feb 17
— Due: Sun, Feb. 26 at 11:59pm




LOGISTIC REGRESSION ON
GAUSSIAN DATA



Logistic Regression
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Logistic Regression

Logistic Regression Distribution
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Logistic Regression

Classification with Logistic Regression



LEARNING LOGISTIC REGRESSION



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(0) = —log | [ pe(y”x")
Why? =

1. We can’t maximize likelihood (as in Naive Bayes)
because we don’t have a joint model p(x,y)

2. It worked well for Linear Regression (least squares is
actually MCLE! more on this later...)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(60)
—~ 0

Approach 1: Gradient Descent

(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)
L
‘_/Approach 3: Newton’s Method

L(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(60)
0

Approach 1: Gradient Descent
(take larger — more certain — steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

P . 27

(set derivatives equal to zero and solve




PERCEPTRON, LINEAR REGRESSION,
AND LOGISTIC REGRESSION



all.chourse.org .
i Matching Game

Question: @4
Match the Algoritl:rﬁ to its Update Rule

1. SGD for LogIS//t‘I; Regressw-l: 4; 0, < 0, + (h0<x(i)) _ y(z'))
he(x) = p(y]x) = 0‘(@")()

2. Least Mean Squares 5. 1

= O+ Ok + . .

ho(x) = 07 s &, F T T o A(he (<) — y@)
- 5 Lo Rase

3. Perceptron b. 0. 0 + )\(h (X(i)) 3 (i))x(i)
he(x) = sign(6” x) e - ST

(P‘ /t.Xc‘JM\V\) R\{

Answer: A.1=5, 2=4, 3=6 @:6, 2=6, 3:éS ‘ i None.?,t-t-qe—abmfe
B. 1=5, 2=6, 3=410l  F.1=6, 2=5, 3=5
C. 1:6) 2=4, 3=4 G. 1=5, 2=5, 3=5
D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6

X(C



SGD for Logistic Regression
Question: QZ-

Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...

A. (1) compute the gradient of the log-likelihood for all examples (2) update all
the parameters using the gradient

B. (askMattforadescription of SGD for Logistic Regression, (Z)writeitdown,

r answ x\C

C. (1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example

QO%D‘ (1) randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all
examples

(906 E. 1) randomly pick an example, (2) compute the gradient of the log-likelihood
or that example, (3) update all the parameters using that gradient

26‘/0 F.. (1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient




Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, %)

1:

2 0+« 09

3: while not converged do
4 00— YVeJ(O)

5 return 6

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

VoJ(0) =




Stochastic Gradient Descent (Sm

Algorithm 1 Stochastic Gradient Descent (SG D)

= procedure SGD(D, 69)

2: 0+ 6

3: while not converged do

4: for i € shuffle({1,2,...,N}) do
5:

6

0«6 —TYVeJ(0)
return @

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:

Let J(O) J9(0)

=y
where J(*)(8) @gpe(y@'




Logistic Regression vs. Perceptron

Question: (5 Ac:toxe B=/nx E:F:lx\

907

True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic

Regression will result in a change to the A 4+ -
parameters only if the current example is _
incorrectly classified. + + —
T %
Answer: o{x) T 4L+ ’
|.O 4

—

I




BAYES OPTIMAL CLASSIFIER



Bayes Optimal Classifier

Suppose you knew the

distribution p*(y | X) or had Probabilistic Learning
a good approximation to

Today, we assume that our

it. :
output is sampled from a

: conditional probability
Question: distribution:
How would you design a i "
function y = h(x) to predict | X( ) ~ p ()
a single label? (4) ) (4)

=y~ p*(-[x)

Answer:
You’d use the Bayes O.ur .goalois to learn a probability
optimal classifier! distribution p(y|x) that best

——3PPTOXIMETES T X approximates p*(y|x)



—

Bayes Optimal Classifier i'iﬂ*{

Suppose you have an oracle that knows the data generating distribution, p*(y|x).

Q: What is the optimal classifier in this setting?
A: The Bayes optimal classifier! This is the best classifier for the distribution p* and

theAIoss function. K(\i \D j_(\ﬁé\/)
. L(x) { \:;a
D{,,n’a _ot
o O &Lwtu;,
- (\1=0|x>

1O - — ¢ xX=05% %r O/
0% - | willos (g %
oly=tig)  Altd) (w Z*M;

X

Definition: The reducible error is the expected loss of a hypothesis h(x) that could
be reduced if knew a p*(y|x) and/picked a the optimal h(x) for that p*.

Definition: The irreducible error is the expected loss of a hypothesis h(x) that
could not be reduced if knew a p*(y|x) and picked a the optimal h(x) for that p*.



OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N
examples

» Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

* Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples



Mini-Batch SGD

/

while not converged: 0 < 0 — g

Three variants of first-order optimization:
1 e o,
Gradient Descent: g = V.J(8)|= ; vVJ®(0)
SGD: g = .VJ(i) () l where i sampled uniformly

S
1 .
Mini-batch SGD: g = 5 Z v Jis) (62) where is sampled uniformly Vs
= ‘ s=1 ) . , .
{ U’

s Gro vt S<4

28



Logistic Regression Objectives

You should be able to...

* Apply the principle of maximum likelihood
estimation (MLE) to learn the parameters of a
probabilistic model

* Given a discriminative probabilistic model, derive the
conditional log-likelihood, its gradient, and the
corresponding Bayes Classifier

* Explain the practical reasons why we work with
the log of the likelihood

* Implement logistic regression for binary classification

* Prove that the decision boundary of binary logistic
regression is linear



FEATURE ENGINEERING



Handcrafted Features

p(y|x) <
exp(O,




Feature Engineering

Where do features come from?

A

hand-crafted
featL&
Sun et al., 2011

O

3

O

Zhou et al,,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning

32



Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al,,
2005

Look-up table Classifier
(contI:xF’)cL\:\fords) embedding ——> missing word
Cansupervisel>
learning
similar words, cat: | o | .23 -4
similar embeddings
dog:| 0.3 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /

embeddings
O O Mikolov et al.,

2013

Feature Learning

33



Feature Engineering

Where do features come from?

A :
pooling ? ,Lﬂ_FI\
CoOCaOC3C— [ | — | |
I PP S St Y A T MR
___I S . 1 = ! :! :! 1
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A4
Zhou et al,, .
2005 word string
O embeddings
@) embeddings ____ Socher, 2011
O mikolov etal, O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A
) S
N
WNP,VP Pid N
7’7 N
NP :;| VP | |
WDT,NN// \\ WV,NN,/ \\ tree
/ \ / \ S embeddings
| | | | | | | | O Socher et al.,
Tt T 1 1 O, ermanis
A Hermann & Blunsom,
The [movie] showed [wars] S 2013
III
S00T word ,'I strlng
) ‘O embeddings
@) embeddings _____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning
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Feature Engineering

Where do features come from?

A e
Ky fe G
word embedding My, ’776%, :
flc es . d//)
hand-crafted features \/SJ,,; "V/% &
features A~ ----- >0 {‘7(’(-
= Turian et al. O ,C,;?f'
O O 2010 © Hermann et al. o
Sun et al., 2011 Koo et al. 2014
O 2008
? tree
I embeddings
|: O Socher et al.,g
8 i 2013
' Aermann & Blunsom,
H n
H / 2013
O :
Zhou et al., 1: / .
2005 ' word ,'I strmg
) ,O embeddings
@) embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 5>

Feature Learning
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——

Feature Engineering

Where do features come from?

rd embedding best of both

hand-craftdd features | d 5
features| A ----- > O e s WOorias:
_ Turian et al. O
O - 2010
Hermann et al. A
Sun et al., 2011 Koo et al. 2014 N
2008

,: @) embeddings
‘}\ Socher et al

8 : 2013
i A Hermann & Blunsom,
i / 2013
1

Zhou et al,, 1 /
2005 ' word :I .
° y e
O embeddings ____» O S
Mikolov et al., O obert & Weston,

2013 2008

Feature Learning

37



Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

(o) (=] (o

The movie | watched depicted hope

1
%



Feature Engineering for NLP

Per-word Features:
x(1) x(2) x(3) x(4) x(5) x(6)

is-capital(w;) 1 1

endswith(w;, “e") 1 1 N 1
endswith(w;,“d"”) /b > 1
endswith(w;, “ed”) 1/ 1

w; == *“aardvark”

w; == “hope” 1

noun noun verb verb noun

The movie | watched depicted hope

\




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)

w; ¥= “watched” 1
Wi+i| == “watched” 1

w;_; == “watched” 1
lwi+zl== “watched” 1
W;_, == “watched” 1

(o) (=] (o

The movie K watehed depicted hope




Feature Engineering for NLP

Context Features:

0 x@  xB  x@ 06 «(6)
w; == “I”" 1
Wis == 4T L
Wi, == “I" 1
Winp == 41" L
Wi, == “I" 1

(o) (=] (o

The movie | watched depicted hope




Table from I\/Iannin . .
Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

—
Model Feature Templates Token | Unk.
Feats Acc. Acc.

— 3GRAMMEMM See text 2 52.07% 88.99%
— NAACL 2003  See text and [1] ,J 460,552 | 55.31% 97.15%\ 88.61%
___ Replication  See text and [1] 460,551 55.62% 97.18% | 88.92%
___ Replication’  +rareFeatureThresh =5 482,364 55.67% 97.19% | 88.96%
— 5w +(to, w_2), (to, wa) 730,178 56.23% 97.20% l 89.03%
SWSHAPES -|-<t0, 8_1>, (to, 80>, (to, 8+1> 7312661' 56.52% 97.25%" 89.81%
S5WSHAPESDS + distributional similarity |737,955 56.79% ]97.28% | 90.46%

] [ [

The movie | watched depicted hope




Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org

47



Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

Figure 3: ModeT fmreges 0T planar objects are shown in the
oprow. Recognition results below show model outlines and
mage keys used for matching.

Figure from Lowe (1999) and Lowe (2004)

Scale /‘Ka
(next

octave) /) > =
ﬁ) s
T
A

r

Scale >@—>
(first
octave) >@

\4

\J

Difference of
Gaussian Gaussian (DOG)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

48



Feature Engineering
UES
Question: P

Suppose you are |
building a@ D s 47("
regressiorrmodel to @a;}w‘os

predict the construction
cost of all houses built O shel”
in Pittsburgh in the (D4 hdoms

1930S — 1940s (in 30/40s
dollars). ( (DA Gt
@ 5% “. (ﬂ«'w‘»@
What features would @ gede
yOU USe? @ (st;“—)z @(67(51_9)



NON-LINEAR FEATURES



Nonlinear Features

aka. ‘“‘nonlinear basis functions”

For a linear model:

So far, input was alwayy X = |Z1,...,ZTMm 7 still a linear function
1P , yS/ | oo | of b(x) even though a
Key Idea: let in ome function of x nonlinear function of
— original input:| X € R _J < where M’ > M (usually) X -
— new input: x' eRM| 4 Examples:
— define X' =b(X) = [b1(X), b2(x), .. ., bar (x)] - Perceptron

. — . - Linear regression
where b; : RM — Ris any function . .. & ,
- Logistic regression

Examples: (M = 1)
polynomial b;(x) :fxi Viedl,...,J}

(i — )2
radial basis function bi(z) = exp( (z — 1) )

sigmoid bi(x)

log bi(z) = log(z) —




Example: Linear Regression

b

Goal: Learny =w'f(x) +b
where f(.) is a polynomial

basis function .

e
2.0 - .

1 2.0 1.2

2 1.3 1.7 1.5 -
10 11 19 1.0 -
0.5 -

true “unknown”
target function is

linear with 00

negative slope

and gaussian 05 - ‘
nOise 1.0 15

2.0

2.5

3.0

53



Example: Linear Regression

Goal: Learny =w'f(x) +b

where f(.) is apolynomial

PaSiS function | Linear Regression (poly=1)

2.0 -
e

1 2.0 1.2

15 -
2 1.3 17
y 1.0
10 11 1.9
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial

basis function ~ Linear Regression (poly=2)
ﬂlﬂﬂ
1.2 (1.2)
1.5 -
2 13 1.7 (.70
y 1.0
10 11 1.9 (1.9)
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example:

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function

1.2 (1.2)2 (1.2)3

2 13 17 (172 (1.7)3
10 11 1.9 (1.9)2(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Linear Regression

Linear Regression (poly=3)

15 2.0 2.5

56



Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

iy x ] e
1 20 12 .. (1.2)

2 13 1.7 ... (1.7
10 11 1.9 .. (1.9)p

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

57



Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function

2.0 -
Dle]e =)=
8
1 20 12 .. (1.2) s
2 13 1.7 ... (1.7)8
y 1.0 -
10 11 19 .. (1.9)p®
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
-0.5 -

and gaussian
noise

1.5

Linear Regression (poly=38)

2.0 2.5

3.0

58



Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - !
iy x ] e
1 20 12 .. (1.2) s
2 13 17 .. (17)
y 1.0 -
10 11 19 .. (1.9)
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
o -0.5 -
and gaussian

noise

1.5

Linear Regression (poly=9)

2.0

2.5

3.0

59



Over-fitting

1 . :
—©— Training
—O— Test
W
2 0.5
&
0

Root-Mean-Square (RMS) Error:  Erums = 2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

%ty W3R +o 1
\o Ik 5 Rt it - WX £H

=0 M=1 M=3, M =09
L oog, 0 19 .82 To. 1 0.35
S t 1.27 /7,% 232.37

o, -25.43 -5321.83
0, 17.37 ) 48568.31
0, -231639.30

0. . 640042.26
- “1061800.52 }
. [/1042400.18

0, T557682.99

W 6 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
iy x ] e
1 20 12 .. (1.2)° s
2 13 1.7 ... (1.7)p
y 1.0 -
10 11 1.9 .. (1.9)p¢
0.5 -
0.0 -
-0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
62



Example: Linear Regression

Goal: Learny =w'f(x) +b
where f(.) is a polynomial
basis function

1 2.0 1.2

99

100

1.3
0.1

1.1

0.9

1.7

2.7

1.9

1.5

(1.2)9

. (17
. (27 y

. (1.9)

. (1.5)°

0.5 -

0.0 -

-0.5 -

1.0

Linear Regression (poly=9)

1.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

63



REGULARIZATION



Overtitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis é”lﬂ RQYZX & s
Oy A

* What does it mean for a hypothesis (or
model) to be simple?

1. small number of features (model selection)

2. small number of “important” features
(shrinkage)

5-1o: | = | 000! X={n el 8% % 87
o, 102 ;l
O, 0.0002 >
q -7 L X4




Regularlzatlonw w ) e

G
Given objective function: J(G)/ /

Goal is to find: 0 = argmm J(0)+ \r(6 "
6 3/?3?’ i ‘W’rf"\‘r

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

Choose form of r(0):

— Example: g-norm (usually p-norm): [|8]|, = (Z |9m|q>

q 7(0) yields parame- name  optimization notes
ters that are...

0 |8|lo=>_1(0n #0) zerovalues Loreg. { no good computa-

L ||8||1 D] |0m zero values Lireg.| subdifferentiable
2 (||0||2)7= 2 small values L2 reg. +differentiable

68




Regularization Examples

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

Tsa(6) = J(6) +|A||e||2
N

M
% Z ~(07x(D — ()2 4{) Z
=1 m=1
| _JL -\

l\D

Add an L1 regularizer to Linear Regression (aka. LASSO)
T

Jiasso(0) = J(0) +

N
O~ S
1=1

/ ) [

18]l

L

69



Regularization Examples

Add an L2 regularizer to Logistic Regression

7(0) = 7(0) 4\ 10]

1 N
=~ 2 ~logp(y® |x,0) HA 6L,
L 1=1 m=1

1

Add an L1 regularizer to Logistic Regression

7'(6) = 7(0) +{ 6]l |

1 & S
- N > —logp(y™ | x,0) HA D (0]
i—1 m=1
L L

70



Regularization

Question:
Suppose we are minimizing J’(6) where
J'(0) = J(0) + Ar(0) —

As A increases, the minimum of J’(6)

)
will... 7 :
A. ...move towards the midpoint < //q

between J(0) and r(6) \\&

B. ...move towards the minimum of J(0)
6 .move towards the minimum of r(0) /7;9) — /|6 |g

.move towards a theta vector of

p05|t|ve infinities v

E. ...move towards atheta vector of
negative infinities
F. ...staythesame



