10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science
Carnegie Mellon University

Regularization $+$
 Neural Networks

Matt Gormley
Lecture 11
Feb. 22, 2023

Reminders

- Homework 4: Logistic Regression
- Out: Fri, Feb 17
- Due: Sun, Feb. 26 at 11:59pm
- Lecture on Friday

REGULARIZATION

Overfitting

Definition: The problem of overfitting is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when k is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

- Occam's Razor: prefer the simplest hypothesis
- What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)
2. small number of "important" features (shrinkage)

Regularization

- Given objective function: $J(\theta)$
- Goal is to find: $\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})$
- Key idea: Define regularizer r(θ) s.t. we tradeoff between fitting the data and keeping the model simple
- Choose form of $r(\theta)$:
- Example: q-norm (usually p-norm): $\|\boldsymbol{\theta}\|_{q}=\left(\sum_{m=1}^{M}\left|\theta_{m}\right|^{q}\right)^{q}$

q	$r(\boldsymbol{\theta})$	yields parame- ters that are...	name	optimization notes		
0	$\\|\boldsymbol{\theta}\\|_{0}=\sum \mathbb{1}\left(\theta_{m} \neq 0\right)$	zero values	Lo reg.	no good computa- tional solutions		
1	$\\|\boldsymbol{\theta}\\|_{1}=\sum\left\|\theta_{m}\right\|$	zero values	L1 reg.	subdifferentiable 2		
$\left(\\|\boldsymbol{\theta}\\|_{2}\right)^{2}=\sum \theta_{m}^{2}$	small values	L2 reg.	differentiable			

Regularization Examples

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

$$
\begin{aligned}
J_{\mathrm{RR}}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{2}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2}+\lambda \sum_{m=1}^{M} \theta_{m}^{2}
\end{aligned}
$$

Add an L1 regularizer to Linear Regression (aka. LASSO)

$$
\begin{aligned}
J_{\mathrm{LASSO}}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2}+\lambda \sum_{m=1}^{M}\left|\theta_{m}\right|
\end{aligned}
$$

Regularization Examples

Add an L2 regularizer to Logistic Regression

$$
\begin{aligned}
J^{\prime}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{2}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}-\log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)+\lambda \sum_{m=1}^{M} \theta_{m}^{2}
\end{aligned}
$$

Add an L1 regularizer to Logistic Regression

$$
\begin{aligned}
J^{\prime}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1} \\
& =\frac{1}{N} \sum_{i=1}^{N}-\log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)+\lambda \sum_{m=1}^{M}\left|\theta_{m}\right|
\end{aligned}
$$

Regularization

Question:

Suppose we are minimizing $J^{\prime}(\theta)$ where

$$
J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

As λ increases, the minimum of $J^{\prime}(\theta)$ will...
A. ... move towards the midpoint between $J(\theta)$ and $r(\theta)$
B. ... move towards the minimum of $J(\theta)$
C. ... move towards the minimum of $r(\theta)$
D. ... move towards a theta vector of positive infinities
E. ... move towards a theta vector of negative infinities
F. ... stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_{0}-- that is, the parameter for which we fixed $x_{0}=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Standardizing Data

- It's common to standardize each feature by subtracting its mean and dividing by its standard deviation
- For regularization, this helps all the features be penalized in the same units
(e.g. convert both centimeters and kilometers to z-scores)

REGULARIZATION EXAMPLE: LOGISTIC REGRESSION

Example: Logistic Regression

Training Data

Test
Data

- For this example, we construct nonlinear features (i.e. feature engineering)
- Specifically, we add polynomials up to order 9 of the two original features x_{1} and x_{2}
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.0001)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.001)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=10000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=100000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+06)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+07)

Example: Logistic Regression

OPTIMIZATION FOR L1 REGULARIZATION

Optimization for L1 Regularization

Can we apply SGD to the LASSO learning problem?

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J_{\mathrm{LASSO}}(\boldsymbol{\theta})
$$

$$
\begin{aligned}
J_{\mathrm{LASSO}}(\boldsymbol{\theta}) & =J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1} \\
& =\frac{1}{2} \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2}+\lambda \sum_{k=1}^{K}\left|\theta_{k}\right|
\end{aligned}
$$

Optimization for L1 Regularization

- Consider the absolute value function:

$$
r(\boldsymbol{\theta})=\lambda \sum_{k=1}^{K}\left|\theta_{k}\right|
$$

- The L1 penalty is subdifferentiable (i.e. not differentiable at 0)

Def: A vector $g \in \mathbb{R}^{M}$ is called a subgradient of a function $f(\mathbf{x})$ $\mathbb{R}^{M} \rightarrow \mathbb{R}$ at the point \mathbf{x} if, for all $\mathbf{x}^{\prime} \in \mathbb{R}^{M}$, we have:

$$
f\left(\mathbf{x}^{\prime}\right) \geq f(\mathbf{x})+\mathbf{g}^{T}\left(\mathbf{x}^{\prime}-\mathbf{x}\right)
$$

Optimization for L1 Regularization

- The L1 penalty is subdifferentiable (i.e. not differentiable at o)
- An array of optimization algorithms exist to handle this issue:
- Subgradient descent
- Stochastic subgradient descent
- Coordinate Descent

Basically the same as GD and SGD, but you use one of the subgradients when necessary

- Othant-Wise Limited memory Quasi-Newton (OWL-QN) (Andrew \& Gao, 2007) and provably convergent variants
- Block coordinate Descent (Tseng \& Yun, 2009)
- Sparse Reconstruction by Separable Approximation (SpaRSA) (Wright et al., 2009)
- Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck \& Teboulle, 2009)

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum a-posteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
2. Nonlinear features are require no changes to the model (i.e. just preprocessing)
3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are equivalent for appropriately chosen priors

Feature Engineering / Regularization

Objectives

You should be able to... Q1: What questions do yo have?

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Explain why we should not regularize the bias term
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas

NEURAL NETWORKS

Background

A Recipe for
 Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for

Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

4. Train with SGD:
(take small steps
opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

A Recine for

Background

Gradients

1. Given training dat $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}$
2. Choose each of t

- Decision functioi $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$

Backpropagation can compute this gradient!
And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opp-site the gradient)

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta\left(\square-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)\right.
$$

A Recipe for

Goals for Today's Lecture

1. Explore a new class of decision functions (Neural Networks)
2. Consider variants of this recipe for training

- Decision function

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

Train with SGD:

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta^{(t+1)}=\theta^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Decision

Functions

Linear Regression

$$
y=h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
$$

Output

Decision

Functions

Logistic Regression

$$
y=h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
$$

Decision

Functions

Perceptron

Decision Functions

Neural Network

COMPONENTS OF A NEURAL NETWORK

Decision Functions

Neural Network

Suppose we already learned the weights of the neural network.

To make a new prediction, we take in some new features (aka. the input layer) and perform the feed-forward computation.

Decision Functions

Neural Network

$.62=\sigma(.50)$
$.50=13(.1)+2(.3)+7(-.2)$

The computation of each neural network unit resembles binary logistic regression.

Decision Functions

Neural Network

Decision Functions

Neural Network

$$
\begin{aligned}
& .57=\sigma(.29) \\
& .29=.62(-.7)+.80(.9)
\end{aligned}
$$

The computation of each neural network unit resembles binary logistic regression.

Decision Functions

Neural Network

$$
\begin{aligned}
& .57=\sigma(.29) \\
& .29=.62(-.7)+.80(.9)
\end{aligned}
$$

$$
.80=\sigma(1.4)
$$

$$
1.4=13(-.4)+2(.5)+7(.8)
$$

$$
.62=\sigma(.50)
$$

$$
.50=13(.1)+2(.3)+7(-.2)
$$

The computation of each neural network unit resembles binary logistic regression.

Decision Functions

Neural Network

From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...

Biological "Model"

- Neuron: an excitable cell
- Synapse: connection between neurons
- A neuron sends an electrochemical pulse along its synapses when a sufficient voltage change occurs
- Biological Neural Network: collection of neurons along some pathway through the brain

Artificial Model

- Neuron: node in a directed acyclic graph (DAG)
- Weight: multiplier on each edge
- Activation Function: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high
- Artificial Neural Network: collection of neurons into a DAG, which define some differentiable function

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

DEFINING A 1-HIDDEN LAYER NEURAL NETWORK

Neural Networks

Chalkboard

- Example: Neural Network w/1 Hidden Layer

Decision Functions

Neural Network

NONLINEAR DECISION BOUNDARIES AND NEURAL NETWORKS

Decision
Functions

Logistic Regression

Decision
Functions

Logistic Regression

Neural Networks

Chalkboard
-1D Example from linear regression to logistic regression
-1D Example from logistic regression to a neural network

Decision
Functions

Logistic Regression

Decision
Functions

Logistic Regression

Neural Network ${ }^{55^{5 \%}}$

Question: Q2: $A=$ Toe
Suppose you are training a one-hidden layer neural network with sigmoid activations for binary classification.

True or False: There is a unique set of parameters that maximize the likelihood of the dataset above.
$\alpha_{1}^{\prime}=\alpha_{2} \quad \alpha_{2}^{\prime}=\alpha_{1}$

$$
\beta_{1}^{\prime}=\beta_{2} \quad \beta_{2}^{\prime}=\beta_{1}
$$

Answer:

$N N_{s}$ here mancoluex

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

1. \# of hidden layers (depth)
2. \# of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

BUILDING WIDER NETWORKS

$D=M$
 Building a Neural Net

Q: How many hidden units, D, should we use?

The hidden units could learn to be...

- a selection of the most useful features nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features
- a mix of the above

D < M
 Building a Neural Net

Q: How many hidden units, D, should we use?

D $>\mathrm{M}$
 Building a Neural Net

Q: How many hidden units, D, should we use?

The hidden units could learn to be...

- a selection of the most useful features
- nonlinear combinations of the features
- a lower dimensional projection of the features
- a higher dimensional projection of the features
- a copy of the input features a mix of the above

$\mathrm{D} \geq \mathrm{M}$ Building a Neural Net

In the following examples, we have two input features, $M=2$, and we vary the number of hidden units, D.

Examples 1 and 2

DECISION BOUNDARY EXAMPLES

Example \#1: Diagonal Band

Example \#3: Four Gaussians

Example \#2: One Pocket

Example \#4: Two Pockets

Example \#1: Diagonal Band

Example \#1: Diagonal Band

Logistic Regression

Example \#1: Diagonal Band

Example \#1: Diagonal Band

LR1 for Tuned Neural Network (hidden=2, activation=logistic)

Example \#1: Diagonal Band

Example \#1: Diagonal Band

Example \#1: Diagonal Band
 LR1 for Tuned Neural Network, (hidden=2, activation=logistic)

LR2 for Tuned Neural Network, (hidden=2, activation=logistic)

Example \#2: One Pocket

Example \#2: One Pocket

Example \#2: One Pocket

Example \#2: One Pocket

LR1 for Tuned Neural Network (hidden=3, activation=logistic)

Example \#2: One Pocket

LR2 for Tuned Neural Network (hidden=3, activation=logistic)

Example \#2: One Pocket

LR3 for Tuned Neural Network (hidden=3, activation=logistic)

Example \#2: One Pocket

Tuned Neural Network (hidden=3, activation=logistic)

$y(x)$

Example \#2: One Pocket

LR1 for Tuned Neural Network (hidden=3, activation=logistic)

LR3 for Tuned Neural Network (hidden=3, activation=logistic)

LR2 for Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Examples 3 and 4

DECISION BOUNDARY EXAMPLES

Example \#1: Diagonal Band

Example \#3: Four Gaussians

Example \#2: One Pocket

Example \#4: Two Pockets

Example \#3: Four Gaussians

Example \#3: Four Gaussians

Example \#3: Four Gaussians

Example \#3: Four Gaussians

LR1 for Tuned Neural Network (hidden=2, activation=logistic)

Example \#3: Four Gaussians

LR2 for Tuned Neural Network (hidden=2, activation=logistic)

Example \#3: Four Gaussians

Example \#4: Two Pockets

Example \#4: Two Pockets
 Logistic Regression

Example \#4: Two Pockets

Example \#4: Two Pockets

Tuned Neural Network (hidden=2, activation=logistic)

Example \#4: Two Pockets

Tuned Neural Network (hidden=3, activation=logistic)

Example \#4: Two Pockets

Tuned Neural Network (hidden=4, activation=logistic)

Example \#4: Two Pockets

Tuned Neural Network (hidden=10, activation=logistic)

BUILDING DEEPER NETWORKS

Neural Networks

Whiteboard

- Example: Neural Network w/2 Hidden Layers
- Example: Feed Forward Neural Network (matrix form)

Deeper Networks

Q: How many layers should we use?

Deeper Networks

Q: How many layers should we use?

Deeper Networks

Q: How many layers sho ${ }_{y}^{\prime}{ }_{y}^{\prime} d$ we use?

Deeper Networks

Q: How many layers should we use?

- Theoretical answer:
- A neural network with 1 hidden layer is a universal function approximator
- Cybenko (1989): For any continuous function $g(x)$, there exists a 1-hidden-layer neural net $h_{\theta}(x)$ s.t. $\left|h_{\theta}(\mathbf{x})-g(\mathbf{x})\right|<\in$ for all \mathbf{x}, assuming sigmoid activation functions
- Empirical answer:
- Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

Feature Learning

- Traditional feature engineering: build up levels of abstraction by hand
- Deep networks (e.g. convolution networks): learn the increasingly higher levels of abstraction from data
- each layer is a learned feature representation
- sophistication increases in higher layers

Feature Learning

Feature Learning

- Traditional feature engineering: build up levels of abstraction by hand
Deep networks (e.g. convolution networks): learn the increasingly higher levels of abstraction from data
- each layer is a learned feature representation
- sophistication increases in higher layers

