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Reminders

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb. 26 at 11:59pm

• Lecture on Friday
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REGULARIZATION
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Overfitting
Definition: The problem of overfitting is when 
the model captures the noise in the training data 
instead of the underlying structure 

Overfitting can occur in all the models we’ve seen 
so far: 
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)
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Motivation: Regularization

• Occam’s Razor: prefer the simplest 
hypothesis

• What does it mean for a hypothesis (or 
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features 

(shrinkage)
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Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff 
between fitting the data and keeping the model 
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):
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Regularization Examples
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Add an L1 regularizer to Linear Regression (aka. LASSO)

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)



Regularization Examples
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Add an L1 regularizer to Logistic Regression

Add an L2 regularizer to Logistic Regression



Regularization
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Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ) 
will…

A. …move towards the midpoint 
between J(θ) and r(θ)

B. …move towards the minimum of J(θ) 
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of 

positive infinities
E. …move towards a theta vector of 

negative infinities
F. …stay the same



Regularization
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Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by 𝜃& -- that is, the parameter for which 
we fixed 𝑥& = 1

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Standardizing Data
• It’s common to standardize each feature by subtracting its 

mean and dividing by its standard deviation
• For regularization, this helps all the features be penalized 

in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



REGULARIZATION EXAMPLE: 
LOGISTIC REGRESSION
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Example: Logistic Regression
• For this example, we 

construct nonlinear features 
(i.e. feature engineering)

• Specifically, we add 
polynomials up to order 9 of 
the two original features x1
and x2

• Thus our classifier is linear in 
the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized in 
low-dimensions (i.e. the 
original two dimensions)
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression

39

lambda

er
ro

r



OPTIMIZATION FOR L1 
REGULARIZATION
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Optimization for L1 Regularization

Can we apply SGD to the LASSO learning 
problem?
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Optimization for L1 Regularization

• Consider the absolute value function:

42

r(�) = �
K�

k=1

|�k|

• The L1 penalty is subdifferentiable (i.e. not 
differentiable at 0)



Optimization for L1 Regularization
• The L1 penalty is subdifferentiable (i.e. not 

differentiable at 0)
• An array of optimization algorithms exist to handle 

this issue:
– Subgradient descent
– Stochastic subgradient descent
– Coordinate Descent
– Othant-Wise Limited memory Quasi-Newton (OWL-QN) 

(Andrew & Gao, 2007)  and provably convergent variants
– Block coordinate Descent (Tseng & Yun, 2009)
– Sparse Reconstruction by Separable Approximation 

(SpaRSA) (Wright et al., 2009)
– Fast Iterative Shrinkage Thresholding Algorithm (FISTA) 

(Beck & Teboulle, 2009)
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Basically the same as GD 
and SGD, but you use 

one of the subgradients
when necessary



Regularization as MAP

• L1 and L2 regularization can be interpreted 
as maximum a-posteriori (MAP) estimation 
of the parameters

• To be discussed later in the course…
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Takeaways

1. Nonlinear basis functions allow linear 
models (e.g. Linear Regression, Logistic 
Regression) to capture nonlinear aspects of 
the original input

2. Nonlinear features are require no changes 
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are 

equivalent for appropriately chosen priors
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Feature Engineering / Regularization 
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and 

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to 

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly 

separable dataset in higher dimensions
• Describe feature engineering in common application 

areas
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NEURAL NETWORKS
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A Recipe for 
Machine Learning

1. Given training data:

54

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Perceptron
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



Neural Network
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Decision 
Functions

…

…

Output

Input

Hidden Layer



COMPONENTS OF A NEURAL 
NETWORK
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned 
the weights of the neural 
network.

To make a new prediction, we 
take in some new features 
(aka. the input layer) and 
perform the feed-forward 
computation. 



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)
Σ = .50

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network

67

Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each 
neural network unit resembles 
binary logistic regression.

Except we only have the 
target value for y at training 

time! 
We have to learn to create 

“useful” values of z1 and z2 in 
the hidden layer.



From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between 

neurons
• A neuron sends an 

electrochemical pulse along its 
synapses when a sufficient voltage 
change occurs

• Biological Neural Network: 
collection of neurons along some 
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic 

graph (DAG)
• Weight: multiplier on each edge
• Activation Function: nonlinear 

thresholding function, which allows a 
neuron to “fire” when the input value 
is sufficiently high 

• Artificial Neural Network: collection 
of neurons into a DAG, which define 
some differentiable function
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Biological “Computation”
• Neuron switching time : ~ 0.001 sec
• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching 

units
• Many weighted interconnections 

among units
• Highly parallel, distributed processes 

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…



DEFINING A 1-HIDDEN LAYER 
NEURAL NETWORK
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Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer
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Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Neural Network
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Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



NONLINEAR DECISION BOUNDARIES 
AND NEURAL NETWORKS
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y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Networks

Chalkboard
– 1D Example from linear regression to logistic 

regression
– 1D Example from logistic regression to a neural 

network

82



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

83

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Network Parameters
Question:
Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.
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Answer:



ARCHITECTURES
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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BUILDING WIDER NETWORKS
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Building a Neural Net

92

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D = M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D < M



Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D > M



Building a Neural Net
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…

Output

Input

Hidden Layer

In the following examples, we have two input features, 
M=2, and we vary the number of hidden units, D.

The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D ≥ M



DECISION BOUNDARY EXAMPLES
Examples 1 and 2
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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DECISION BOUNDARY EXAMPLES
Examples 3 and 4
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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BUILDING DEEPER NETWORKS
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Neural Networks

Whiteboard
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network 

(matrix form)
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Deeper Networks

138

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks
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…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers
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Figures from Lee et al. (ICML 2009)
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Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers
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Figures from Lee et al. (ICML 2009)
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Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers
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Figures from Lee et al. (ICML 2009)
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