
Regularization
+

Neural Networks

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 11

Feb. 22, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb. 26 at 11:59pm

• Lecture on Friday

2

REGULARIZATION

6

Overfitting
Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

7

Motivation: Regularization

• Occam’s Razor: prefer the simplest
hypothesis

• What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features

(shrinkage)

9

Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff
between fitting the data and keeping the model
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):

10

𝜽 ! = #
"#$

%

𝜃" !

$
!

Regularization Examples

11

Add an L1 regularizer to Linear Regression (aka. LASSO)

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

Regularization Examples

12

Add an L1 regularizer to Logistic Regression

Add an L2 regularizer to Logistic Regression

Regularization

13

Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ)
will…

A. …move towards the midpoint
between J(θ) and r(θ)

B. …move towards the minimum of J(θ)
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of

positive infinities
E. …move towards a theta vector of

negative infinities
F. …stay the same

Regularization

18

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is

usually denoted by 𝜃& -- that is, the parameter for which
we fixed 𝑥& = 1

• Regularizers always avoid penalizing this bias / intercept
parameter

• Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Standardizing Data
• It’s common to standardize each feature by subtracting its

mean and dividing by its standard deviation
• For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

REGULARIZATION EXAMPLE:
LOGISTIC REGRESSION

24

Example: Logistic Regression
• For this example, we

construct nonlinear features
(i.e. feature engineering)

• Specifically, we add
polynomials up to order 9 of
the two original features x1
and x2

• Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)

25

Training
Data

Test
Data

Example: Logistic Regression

26

Example: Logistic Regression

27

Example: Logistic Regression

28

Example: Logistic Regression

29

Example: Logistic Regression

30

Example: Logistic Regression

31

Example: Logistic Regression

32

Example: Logistic Regression

33

Example: Logistic Regression

34

Example: Logistic Regression

35

Example: Logistic Regression

36

Example: Logistic Regression

37

Example: Logistic Regression

38

Example: Logistic Regression

39

lambda

er
ro

r

OPTIMIZATION FOR L1
REGULARIZATION

40

Optimization for L1 Regularization

Can we apply SGD to the LASSO learning
problem?

41

JLASSO(�) = J(�) + �||�||1

=
1

2

N�

i=1

(�T x(i) � y(i))2 + �
K�

k=1

|�k|

�MAP = argmax
�

N�

i=1

log p�(y(i)|x(i)) + log p(�)

= argmax
�

JLASSO(�)argmin

Optimization for L1 Regularization

• Consider the absolute value function:

42

r(�) = �
K�

k=1

|�k|

• The L1 penalty is subdifferentiable (i.e. not
differentiable at 0)

Optimization for L1 Regularization
• The L1 penalty is subdifferentiable (i.e. not

differentiable at 0)
• An array of optimization algorithms exist to handle

this issue:
– Subgradient descent
– Stochastic subgradient descent
– Coordinate Descent
– Othant-Wise Limited memory Quasi-Newton (OWL-QN)

(Andrew & Gao, 2007) and provably convergent variants
– Block coordinate Descent (Tseng & Yun, 2009)
– Sparse Reconstruction by Separable Approximation

(SpaRSA) (Wright et al., 2009)
– Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

(Beck & Teboulle, 2009)

43

Basically the same as GD
and SGD, but you use

one of the subgradients
when necessary

Regularization as MAP

• L1 and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation
of the parameters

• To be discussed later in the course…

44

Takeaways

1. Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

2. Nonlinear features are require no changes
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are

equivalent for appropriately chosen priors

45

Feature Engineering / Regularization
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly

separable dataset in higher dimensions
• Describe feature engineering in common application

areas

46

NEURAL NETWORKS

53

A Recipe for
Machine Learning

1. Given training data:

54

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression,
Logistic regression, Neural Network

Examples: Mean-squared error,
Cross Entropy

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

55

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

56

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

57

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions
(Neural Networks)

2. Consider variants of this recipe for training

Linear Regression

58

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a

Logistic Regression

59

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Perceptron

60

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Neural Network

61

Decision
Functions

…

…

Output

Input

Hidden Layer

COMPONENTS OF A NEURAL
NETWORK

62

Neural Network

63

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Suppose we already learned
the weights of the neural
network.

To make a new prediction, we
take in some new features
(aka. the input layer) and
perform the feed-forward
computation.

Neural Network

64

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)
Σ = .50

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

65

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

Σ = .50 Σ = 1.4

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

66

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

67

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights .50 = 13(.1) + 2(.3) + 7(-.2)

.62 = σ(.50)

1.4 = 13(-.4) + 2(.5) + 7(.8)
.80 = σ(1.4)

.29 = .62(-.7) + .80(.9)

.57 = σ(.29)

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Neural Network

68

Decision
Functions

Output

Input

Hidden Layer

.1 .3 -.2-.4 .5
.8

-.7 .9Weights

Weights

Σ = .50 Σ = 1.4

Σ = .29

The computation of each
neural network unit resembles
binary logistic regression.

Except we only have the
target value for y at training

time!
We have to learn to create

“useful” values of z1 and z2 in
the hidden layer.

From Biological to Artificial

Biological “Model”
• Neuron: an excitable cell
• Synapse: connection between

neurons
• A neuron sends an

electrochemical pulse along its
synapses when a sufficient voltage
change occurs

• Biological Neural Network:
collection of neurons along some
pathway through the brain

Artificial Model
• Neuron: node in a directed acyclic

graph (DAG)
• Weight: multiplier on each edge
• Activation Function: nonlinear

thresholding function, which allows a
neuron to “fire” when the input value
is sufficiently high

• Artificial Neural Network: collection
of neurons into a DAG, which define
some differentiable function

69

Biological “Computation”
• Neuron switching time : ~ 0.001 sec
• Number of neurons: ~ 1010

• Connections per neuron: ~ 104-5

• Scene recognition time: ~ 0.1 sec

Artificial Computation
• Many neuron-like threshold switching

units
• Many weighted interconnections

among units
• Highly parallel, distributed processes

Slide adapted from Eric Xing

The motivation for Artificial Neural Networks comes from biology…

DEFINING A 1-HIDDEN LAYER
NEURAL NETWORK

70

Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer

71

Neural Network

73

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

74

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

75

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

76

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Neural Network

77

Decision
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

NONLINEAR DECISION BOUNDARIES
AND NEURAL NETWORKS

79

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

80

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

81

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Networks

Chalkboard
– 1D Example from linear regression to logistic

regression
– 1D Example from logistic regression to a neural

network

82

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

83

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

84

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Neural Network Parameters
Question:
Suppose you are training a
one-hidden layer neural
network with sigmoid
activations for binary
classification.

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.

85

Answer:

ARCHITECTURES

86

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters

88

BUILDING WIDER NETWORKS

89

Building a Neural Net

92

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D = M

Building a Neural Net

93

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D < M

Building a Neural Net

95

…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D > M

Building a Neural Net

96

…

Output

Input

Hidden Layer

In the following examples, we have two input features,
M=2, and we vary the number of hidden units, D.

The hidden units
could learn to be…
• a selection of

the most useful
features

• nonlinear
combinations
of the features

• a lower
dimensional
projection of
the features

• a higher
dimensional
projection of
the features

• a copy of the
input features

• a mix of the
above

D ≥ M

DECISION BOUNDARY EXAMPLES
Examples 1 and 2

97

98

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

99

Example #1: Diagonal Band

100

Example #1: Diagonal Band

101

hidden

Example #1: Diagonal Band

102

hidden

Example #1: Diagonal Band

103

hidden

Example #1: Diagonal Band

104

hidden

Example #1: Diagonal Band

105

hidden

hidden

hiddenhidden

Example #2: One Pocket

106

Example #2: One Pocket

107

Example #2: One Pocket

108

hidden

Example #2: One Pocket

109

hidden

Example #2: One Pocket

110

hidden

Example #2: One Pocket

111

hidden

Example #2: One Pocket

112

hidden

Example #2: One Pocket

113

hidden hidden

hiddenhidden

DECISION BOUNDARY EXAMPLES
Examples 3 and 4

114

115

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #3: Four Gaussians

116

Example #3: Four Gaussians

117

Example #3: Four Gaussians

118

Example #3: Four Gaussians

119

hidden

Example #3: Four Gaussians

120

hidden

Example #3: Four Gaussians

121

hidden

Example #3: Four Gaussians

122

hidden

Example #4: Two Pockets

123

Example #4: Two Pockets

124

Example #4: Two Pockets

127

Example #4: Two Pockets

128

hidden

Example #4: Two Pockets

129

hidden

Example #4: Two Pockets

130

hidden

Example #4: Two Pockets

131

hidden

BUILDING DEEPER NETWORKS

132

Neural Networks

Whiteboard
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network

(matrix form)

133

Deeper Networks

138

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?

Deeper Networks

139

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?

Q: How many layers should we use?

Deeper Networks

140

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Deeper Networks

141

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function
approximator

– Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers)

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

142
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

decision

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

143
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Faces

Feature Learning
• Traditional feature

engineering: build up
levels of abstraction
by hand

• Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data
– each layer is a

learned feature
representation

– sophistication
increases in higher
layers

144
Figures from Lee et al. (ICML 2009)

…

…

…

…

pixels

lines

parts

objects

CBDN on Cars

