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Reminders
• Post-Exam Followup:
– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb 26 at 11:59pm

• Homework 5: Neural Networks
– Out: Sun, Feb 26
– Due: Fri, Mar 17 at 11:59pm
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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Neural Network
Example: Neural Network with 2 
Hidden Layers and 2 Hidden Units
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Neural Network (Matrix Form)
Example: Arbitrary Feed-forward Neural Network
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Neural Network (Vector Form)
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⍺23

β1 β2Weights

Weights

Neural Network with 1 Hidden Layers 
and 2 Hidden Units (Matrix Form)



ACTIVATION FUNCTIONS
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Activation Functions
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…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions
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Neural Network with arbitrary 
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Activation Functions
So far, we’ve 
assumed that the 
activation function 
(nonlinearity) is 
always the sigmoid 
function…

…but the sigmoid 
is not widely used 
in modern neural 
networks 
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Sigmoid (aka. logistic) function

Hyperbolic tangent function



Activation Functions
• sigmoid, σ(x)
– output in range 

(0,1)
– good for 

probabilistic 
outputs

• hyperbolic 
tangent, tanh(x)
– similar shape to 

sigmoid, but 
output in range (-
1,+1)
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Sigmoid (aka. logistic) function

Hyperbolic tangent function



AI Stats 2010

sigmoid 
vs. 
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5



Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute

19



Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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• Exponential Linear 
Unit (ELU)
– same as ReLU on 

positive inputs
– unlike ReLU, allows 

negative outputs and 
smoothly transitions 
for x < 0



Activation Functions
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1. Training loss 
converges 
fastest with 
ELU

2. ELU(x) yields 
lower test 
error than 
ReLU(x) on 
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)



LOSS FUNCTIONS & OUTPUT 
LAYERS
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Neural Network for Classification
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(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Neural Network for Regression
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(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
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�M
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Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared error

25

2. Binary Cross-Entropy:
– the same objective as Binary Logistic Regression
– i.e. negative log likelihood
– This requires our output y to be a probability in [0,1]



Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss



Multiclass Output
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…

…

Output

Input

Hidden Layer

…



Multiclass Output
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Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Objective Functions for NNs
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3. Cross-Entropy for Multiclass Outputs:
– i.e. negative log likelihood for multiclass outputs
– Suppose output is a random variable Y that takes one of K values
– Let y(i) represent our true label as a one-hot vector:

– Assume our model outputs a length K vector of probabilities:

– Then we can write the log-likelihood of a single training example (x(i), y(i)) 
as:

0 00 00 …1 0
1 52 63 …4 K

y(i) = 

y = softmax(fscores(x, θ))



Neural Network Errors
Question X: For which of the datasets below 
does there exist a one-hidden layer neural 
network that achieves zero classification
error? Select all that apply.

30

Question Y: For which of the datasets 
below does there exist a one-hidden layer 
neural network for regression that achieves 
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary 

logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures

• Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing 
the architecture of a neural network

• Implement a feed-forward neural network

31



APPROACHES TO 
DIFFERENTIATION

Computing Gradients

32



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

33

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

34

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Approaches to 
Differentiation

• Question 1:
When can we compute the gradients for an 
arbitrary neural network?

• Question 2:
When can we make the gradient 
computation efficient?

35

Training



Approaches to 
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of 

backpropagation
– Con: Slow for high dimensional inputs / 

outputs
– Required: Ability to call the function f(x) on 

any input x
2. Symbolic Differentiation

– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha 

/ Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time 

if not carefully implemented
– Required: Mathematical expression that 

defines f(x)

36

Training



Approaches to 
Differentiation

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied 

to Neural Nets
– Pro: Computes partial derivatives of one 

output f(x)i with respect to all inputs xj in 
time proportional to computation of f(x)

– Con: Slow for high dimensional outputs (e.g. 
vector-valued functions)

– Required: Algorithm for computing f(x)
4. Automatic Differentiation - Forward Mode

– Note: Easy to implement. Uses dual 
numbers.

– Pro: Computes partial derivatives of all 
outputs f(x)i with respect to one input xj in 
time proportional to computation of f(x)

– Con: Slow for high dimensional inputs (e.g. 
vector-valued x)

– Required: Algorithm for computing f(x)

37

Training



THE FINITE DIFFERENCE METHOD

38



Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon

39

Training



Differentiation Quiz

40

Training

A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]

E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Differentiation Quiz

Differentiation Quiz #2:

43

Training

…

…

…



THE CHAIN RULE OF CALCULUS
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Chain Rule

Whiteboard
– Chain Rule of Calculus

45

Training



Chain Rule

47

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)
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Chain Rule:
Given: 

…



Chain Rule

48

Training
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Chain Rule:
Given: 

…
Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.



BACKPROPAGATION OF ERRORS
Intuitions

49



Error Back-Propagation

50
Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



FORWARD COMPUTATION FOR A 
COMPUTATION GRAPH

Algorithm

60



Backpropagation

Whiteboard
– From equation to forward computation
– Representing a simple function as a 

computation graph

61

Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



BACKPROPAGATION FOR A 
COMPUTATION GRAPH

Algorithm

63



Backpropagation

Whiteboard
– Backprogation on a simple computation graph

64

Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation
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Training

Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.



Backpropagation

67

Training

Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + 2tT(�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

2tT(�a)

(2tT(�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + 2tT(�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

2tT(�a)

(2tT(�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j



TRAINING / FORWARD COMPUTATION 
/ BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network
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Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?
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Training



Backpropagation

Whiteboard
– Example: Backpropagation for Neural Network 

with 2-Hidden Layers
• SGD Training
• Forward Computation
• Computation Graph
• Backward Computation
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Training


