

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Networks + Backpropagation

Matt Gormley Lecture 12 Feb. 24, 2023

Reminders

- Post-Exam Followup:
 - Exam Viewing
 - Exit Poll: Exam 1
 - Grade Summary 1

OH attendance Exam Viewing attendance

- Homework 4: Logistic Regression
 - Out: Fri, Feb 17
 - Due: Sun, Feb 26 at 11:59pm
- Homework 5: Neural Networks
 - Out: Sun, Feb 26
 - Due: Fri, Mar 17 at 11:59pm

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function
- 5. How to initialize the parameters

Neural Network

Example: Neural Network with 2 Hidden Layers and 2 Hidden Units

$$z_{1}^{(1)} = \sigma(\alpha_{11}^{(1)}x_{1} + \alpha_{12}^{(1)}x_{2} + \alpha_{13}^{(1)}x_{3} + \alpha_{10}^{(1)})$$

$$z_{2}^{(1)} = \sigma(\alpha_{21}^{(1)}x_{1} + \alpha_{22}^{(1)}x_{2} + \alpha_{23}^{(1)}x_{3} + \alpha_{20}^{(1)})$$

$$z_{1}^{(2)} = \sigma(\alpha_{11}^{(2)}z_{1}^{(1)} + \alpha_{12}^{(2)}z_{2}^{(1)} + \alpha_{10}^{(2)})$$

$$z_{2}^{(2)} = \sigma(\alpha_{21}^{(2)}z_{1}^{(1)} + \alpha_{22}^{(2)}z_{2}^{(1)} + \alpha_{20}^{(2)})$$

$$y = \sigma(\beta_{1} \ z_{1}^{(2)} + \beta_{2} \ z_{2}^{(2)} + \beta_{0} \)$$

11

Neural Network (Matrix Form)

Example: Arbitrary Feed-forward Neural Network

 $\boldsymbol{\beta} \in \mathbb{R}^{D_2}$

 $\beta_0 \in \mathbb{R}$ $\boldsymbol{\alpha}^{(2)} \in \mathbb{R}^{M \times D_2}$ $\boldsymbol{b}^{(2)} \in \mathbb{R}^{D_2}$

 $\boldsymbol{\alpha}^{(1)} \in \mathbb{R}^{M \times D_1}$ $\boldsymbol{b}^{(1)} \in \mathbb{R}^{D_1}$

 $y = \sigma((\boldsymbol{\beta})^T \boldsymbol{z}^{(2)} + \beta_0)$

 $z^{(2)} = \sigma((\alpha^{(2)})^T z^{(1)} + b^{(2)})$

$$z^{(1)} = \sigma((\alpha^{(1)})^T x + b^{(1)})$$

Neural Network (Vector Form)

Neural Network with 1 Hidden Layers and 2 Hidden Units (Matrix Form)

$$y = \sigma(\boldsymbol{\beta}^T \mathbf{z})$$

$$egin{aligned} &z_2 = \sigma(oldsymbol{lpha}_{2,\cdot}^T \mathbf{x}) \ &z_1 = \sigma(oldsymbol{lpha}_{1,\cdot}^T \mathbf{x}) \end{aligned}$$

ACTIVATION FUNCTIONS

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

... but the sigmoid is not widely used in modern neural networks

Sigmoid (aka. logistic) function

Hyperbolic tangent function

- sigmoid, $\sigma(x)$
 - output in range(0,1)
 - good for
 probabilistic
 outputs
- hyperbolic tangent, tanh(x)
 - similar shape to sigmoid, but output in range (- 1,+1)

Sigmoid (aka. logistic) function

Hyperbolic tangent function

Understanding the difficulty of training deep feedforward neural networks

Figure from Glorot & Bentio (2010)

- Rectified Linear Unit (ReLU)
 - avoids the vanishing gradient problem
 - derivative is fast to compute

 $\operatorname{ReLU}(x) = max(0, x)$

- Rectified Linear Unit (ReLU)
 - avoids the vanishing gradient problem
 - derivative is fast to compute

 $\operatorname{ReLU}(x) = max(0, x)$

- Exponential Linear Unit (ELU)
 - same as ReLU on positive inputs
 - unlike ReLU, allows negative outputs and smoothly transitions for x < 0

$$x) = \begin{cases} x, & \text{if } x > 0\\ \alpha(\exp(x) - 1), & \text{if } x \le 0 \end{cases}$$

Image Classification Benchmark (CIFAR-10)

- 1. Training loss converges fastest with ELU
- 2. ELU(x) yields lower test error than ReLU(x) on CIFAR-10

Figure from Clevert et al. (2016)

LOSS FUNCTIONS & OUTPUT LAYERS

Neural Network for Classification

Neural Network for Regression

Objective Functions for NNs

- 1. Quadratic Loss:
 - the same objective as Linear Regression
 - i.e. mean squared error

$$J = \ell_Q(y, y^{(i)}) = \frac{1}{2}(y - y^{(i)})^2$$
$$\frac{dJ}{dy} = y - y^{(i)}$$

- 2. Binary Cross-Entropy:
 - the same objective as Binary Logistic Regression
 - i.e. negative log likelihood
 - This requires our output y to be a probability in [0,1]

$$J = \ell_{CE}(y, y^{(i)}) = -(y^{(i)}\log(y) + (1 - y^{(i)})\log(1 - y))$$
$$\frac{dJ}{dy} = -\left(y^{(i)}\frac{1}{y} + (1 - y^{(i)})\frac{1}{y - 1}\right)$$

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Figure from Glorot & Bentio (2010)

Multiclass Output

Multiclass Output

Objective Functions for NNs

- 3. Cross-Entropy for Multiclass Outputs:
 - i.e. negative log likelihood for multiclass outputs
 - Suppose output is a random variable Y that takes one of K values
 - Let y⁽ⁱ⁾ represent our true label as a one-hot vector:

Assume our model outputs a length K vector of probabilities:

$$y = softmax(f_{scores}(x, \theta))$$

Then we can write the log-likelihood of a single training example (x⁽ⁱ⁾, y⁽ⁱ⁾) as:

$$J = \ell_{CE}(\mathbf{y}, \mathbf{y}^{(i)}) = -\sum_{k=1}^{K} y_k^{(i)} \log(y_k)$$

Neural Network Errors

Question X: For which of the datasets below does there exist a one-hidden layer neural network that achieves zero *classification* error? **Select all that apply.**

Question Y: For which of the datasets below does there exist a one-hidden layer neural network for *regression* that achieves *nearly* zero MSE? **Select all that apply.**

Neural Networks Objectives

You should be able to...

- Explain the biological motivations for a neural network
- Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- Identify (some of) the options available when designing the architecture of a neural network
- Implement a feed-forward neural network

APPROACHES TO DIFFERENTIATION

Computing Gradients

Background

A Recipe for Machine Learning

- 1. Given training data: $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$
- 2. Choose each of these:
 - Decision function
 - $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$
 - Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

- 3. Define goal: $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$
- 4. Train with SGD:(take small steps opposite the gradient)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$

Background

A Recipe for Gradients

1. Given training dat $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

2. Choose each of t

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Backpropagation can compute this gradient!

And it's a **special case of a more general algorithm** called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)

 $(t) - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i),oldsymbol{y}_i))$

Approaches to Differentiation

• Question 1:

When can we compute the gradients for an arbitrary neural network?

• Question 2:

When can we make the gradient computation efficient?

Approaches to Differentiation

- 1. Finite Difference Method
 - Pro: Great for testing implementations of backpropagation
 - Con: Slow for high dimensional inputs / outputs
 - Required: Ability to call the function f(x) on any input x
- 2. Symbolic Differentiation
 - Note: The method you learned in high-school
 - Note: Used by Mathematica / Wolfram Alpha
 / Maple
 - Pro: Yields easily interpretable derivatives
 - Con: Leads to exponential computation time if not carefully implemented
 - Required: Mathematical expression that defines f(x)

Given $f : \mathbb{R}^A \to \mathbb{R}^B, f(\mathbf{x})$ Compute $\frac{\partial f(\mathbf{x})_i}{\partial x_j} \forall i, j$

Approaches to Differentiation

- 3. Automatic Differentiation Reverse Mode
 - Note: Called Backpropagation when applied to Neural Nets
 - Pro: Computes partial derivatives of one output f(x)_i with respect to all inputs x_i in time proportional to computation of f(x)
 - Con: Slow for high dimensional outputs (e.g. vector-valued functions)
 - Required: Algorithm for computing f(x)
- 4. Automatic Differentiation Forward Mode
 - Note: Easy to implement. Uses dual numbers.
 - Pro: Computes partial derivatives of all outputs f(x)_i with respect to one input x_i in time proportional to computation of f(x)
 - Con: Slow for high dimensional inputs (e.g. vector-valued x)
 - Required: Algorithm for computing f(x)

Given $f : \mathbb{R}^A \to \mathbb{R}^B, f(\mathbf{x})$ Compute $\frac{\partial f(\mathbf{x})_i}{\partial x_j} \forall i, j$

THE FINITE DIFFERENCE METHOD

Finite Difference Method

The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{\left(J(\boldsymbol{\theta} + \boldsymbol{\epsilon} \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \boldsymbol{\epsilon} \cdot \boldsymbol{d}_i)\right)}{2\boldsymbol{\epsilon}}$$
(1)

where d_i is a 1-hot vector consisting of all zeros except for the *i*th entry of d_i , which has value 1.

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon

39

Differentiation Quiz

Differentiation Quiz #1:

Speed Quiz: 2 minute time limit. Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Answer: Answers below are in the form [dy/dx, dy/dz]

- [1208, 810] [42,-72] E. Α. B. [72, -42] F. [810, 1208] C. [100, 127]
- G. [1505, 94] [127, 100] [94, 1505] D. Η.

Differentiation Quiz

Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:

$$y = \sigma(\boldsymbol{\beta}^T \sigma((\boldsymbol{\alpha}^{(2)})^T \sigma((\boldsymbol{\alpha}^{(1)})^T \mathbf{x}))$$

where $y \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^{D^{(0)}}$, $\boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$ and $\boldsymbol{\alpha}^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$\sigma(\mathbf{a}) = [\sigma(a_1), \dots, \sigma(a_K)]^T$$

Let σ be sigmoid: $\sigma(a) = \frac{1}{1+exp-a}$ What is $\frac{\partial y}{\partial \beta_j}$ and $\frac{\partial y}{\partial \alpha_j^{(i)}}$ for all i, j.

THE CHAIN RULE OF CALCULUS

Chain Rule

Whiteboard

– Chain Rule of Calculus

Chain Rule

Given:
$$y = g(u)$$
 and $u = h(x)$.
Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Chain Rule

Given:
$$y = g(u)$$
 and $u = h(x)$.
Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.

Intuitions

BACKPROPAGATION OF ERRORS

FORWARD COMPUTATION FOR A COMPUTATION GRAPH

Algorithm

Backpropagation

Whiteboard

- From equation to forward computation
- Representing a simple function as a computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

BACKPROPAGATION FOR A COMPUTATION GRAPH

Algorithm

Backpropagation

Whiteboard

- Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? **Round your answer to the nearest integer**.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Backpropagation

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Backpropagation

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward	Backward	
$J = \cos(u)$	$\frac{dJ}{du} + = -sin(u)$	
$u = u_1 + u_2$	$\frac{dJ}{du_1} += \frac{dJ}{du}\frac{du}{du_1}, \frac{du}{du_1} = 1 \qquad \qquad \frac{dJ}{du_2} += \frac{dJ}{du}\frac{du}{du_2}, \frac{du}{du_2} = 1$	
$u_1 = sin(t)$	$\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \frac{du_1}{dt} = \cos(t)$	
$u_2 = 3t$	$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \frac{du_2}{dt} = 3$	
$t = x^2$	$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \frac{dt}{dx} = 2x$	
	67	ľ

Training Ba	Backpropagation	
Case 1: Logistic Regression Input x1 x2		
Forward	Backward	
$J = y^* \log y + (1 - y^*) \log(1 - y)$	$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$	
$y = \frac{1}{1 + \exp(-a)}$	$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \ \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a)+1)^2}$	
$a = \sum_{j=0}^{D} \theta_j x_j$	$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$ $\frac{dJ}{dx_j} = \frac{dJ}{da} \frac{da}{dx_j}, \ \frac{da}{dx_j} = \theta_j$	

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network **Question:** How do we train this model?

Backpropagation

Whiteboard

- Example: Backpropagation for Neural Network with 2-Hidden Layers
 - SGD Training
 - Forward Computation
 - Computation Graph
 - Backward Computation