10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Neural Networks
4F

Backpropagation

Matt Gormley
Lecture 12
Feb. 24,2023

Reminders

Scaling Up

* Post-Exam Followup:
— Exam Viewing |
— Exit Poll: Exam 1 . I I & 0. 0
— Grade Summary 1 o e = Vg e

* Homework 4: Logistic Regression
— Out: Fri, Feb 17
— Due: Sun, Feb 26 at 11:59pm

* Homework 5: Neural Networks

— Out: Sun, Feb 26
— Due: Fri, Mar 17 at 11:59pm

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
of units per hidden layer (width)

2.

3. Type of activation function (nonlinearity)
4. Form of objective function

5. How to initialize the parameters

Neural Network

Example: Neural Network with 2
Hidden Layers and 2 Hidden Units

1 1 1 1 1
zl() = G(ail)xl - aiz)xz - a§3)x3 -+ aio))

1 1 1 1 1
zg) = G(C(él)xl | agz)xz - a§3)x3 - aéo))

2) (1 2) (1) 2
Zy, = G(Clél)Zl) +a§2)z§ +a§0))

2 2
y = o 22 + B, 2+ By)

Neural Network (Matrix Form)

Example: Arbitrary Feed-forward Neural Network

p € RP2
2
B, €R y = o((B)z” + B)
(2)
@ a e RM*Dz Z(Z) — G((a(z))Tz(l) n b(Z))
b € RP:

z% = o((@)Tx + bD)

bV e RP1

11

Neural Network (Vector Form)

Neural Network with 1 Hidden Layers
and 2 Hidden Units (Matrix Form)

Output Yy = O'(IBTZ)
Weights

29 = a(ag’,x)
Hidden Layer 2 = O_(aflr X)

Weights

12

ACTIVATION FUNCTIONS

Activation Functions

Neural Network with sigmoid [(F) Loss]
activation functions

J=35(y—y*)

?

[(E) Output (sigmoid)
1

Output Y = TFexp(=b)

?

[(D) Output (linear)
b=3"1"0B)%

Hidden Layer

?

25 = 14+exp(—aj)’ \V/]

[(C) Hidden (sigmoid)

?

(B) Hidden (linear)
aj = 3,00 Qjitis U

?

(A) Input
Givenz;, Vi

Activation Functions

Neural Network with arbitrary [SF)_'-‘;SS N]
nonlinear activation functions =3y -y

?

[(E) Output (nonlinear)

Output Yy~ O<b)

?

[(D) Output (linear)
b=3"1"0 B2

Hidden Layer

?

[(C) Hidden (nonlinear)
R = a(aj), V]

?

[(B) Hidden (linear)
aj =ity aiti, Vi

?

(A) Input
Given x;, V1

Activation Functions

So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function...

... but the sigmoid
is not widely used
in modern neural
networks

—0.25 1

—0.50 1

—0.751

—1.00 4

Sigmoid (aka. logistic) function

1.00 1 ——— =1
o(x) = 1+ exp(—x) 1

0.75 4

0.50 A 7

0.25 4

-
-
-
——————————

0.00 4

S—

-

-,

Hyperbolic tangent function

B R — tanh(x)}

0.75 A

0.50 A

0.25 A

0.00 A

Activation Functions

* sigmoid, o(x)
— output in range
(0,1)
— good for

probabilistic
outputs

* hyperbolic
tangent, tanh(x)

— similar shape to
sigmoid, but
output in range (-
1,+1)

—0.25 1

—0.50 1

—0.751

—1.00 4

Sigmoid (aka. logistic) function

1

1.00 1 e = = -
o(x) T T+exp(—x) 1

0.75 4
0.50 A 7

0.25 4

-
-
-
——————————

0.00 4

-
-,

Hyperbolic tangent function

B R — tanh(x)}

0.75 A

0.50 A

0.25 A

0.00 A

Understanding the difficulty of training deep feedforward neural networks

Al Stats 2010

— Sigmoid depth 5
~— Sigmoid depth 4
—— Tanh depths
Softsign depth s

80§

70 f.,.
A

| ".‘ Softsign N depths
60/ | '\.ll]' ‘*\1 Tanh N depths
Y : 3
5 i 4‘"\. Pre-training depths
Tso i W‘ M
o l »
5 ‘.' ”"o'kl w“ﬂ" il
‘540 A _ W,Jl) ‘
- ' _A,‘ W LJ"” . o
%\E“y. ML, whid sigmoid
’N'*UV;‘).- W .fvw
| A R s s VS.
30 "“ ¥ ‘v*.l.v_;\w‘w o W‘_VMMN_‘“
- S wh tanh
"\, A SRR
oAl N “(I“.hj
bl LA "":::::Ir-':) ":";}‘4&\&'\. ;
< A’\’\”\ “w\‘fm"'wv.ku_,‘. i ;:":,“'"‘j':"'?"v...q.‘f?"‘i.5.7’52'"‘? Py
M S
0.0 0.5 1.0 15 2.0 :
exemples seen le7

Figure from Glorot & Bentio (2010)

Activation Functions

Rectified Linear Unit
(ReLU)

— avoids the vanishing
gradient problem

— derivative is fast to
compute

ReLU(z) = max(0, x)

—— RelLU(x)]

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

19

Activation Functions

Rectified Linear Unit * Exponential Linear

(ReLU) Unit (ELU)

— same as ReLU on
positive inputs

— unlike ReLU, allows

— avoids the vanishing
gradient problem

1 === ELU(x)

— derivative is fast to negative outputs and
compute smoothly transitions
ReLU(z) = maz(0, x) forx <o
x, ifx >0
ELU(z) = .
{a(exp(:c) —1), ifz<0

— RelLU(x)

-
-
-
e e ————T

Activation Functions

Image Classification Benchmark (CIFAR-10)

100-

T\ —relu
—leaky

—srelu

—elu

oo
o

Test Error [%]
(@)

40-

0 25 50
Updates (1e3)

Figure from Clevert et al. (2016)

Training loss
converges
fastest with
ELU

ELU(x) yields
lower test
error than
ReLU(x) on
CIFAR-10

21

LOSS FUNCTIONS & OUTPUT
LAYERS

Neural Network for Classification

Output

Hidden Layer

[(E) Output (sigmoid)
1

Y= Trexp(—d)

?

[(D) Output (linear)

b=3;"0 Bz

?

(C) Hidde

Zj—

n (sigmoid)
1

14exp(—a;)’

vj

—/

?

(B) Hidden (linear)

M .
a; = z@':o Q4T vy

?

|

(A) Input
Given Zi, \]

|

23

Output

Hidden Layer

Neural Network for Regression

(D) Output (lilnear)
y =50 857

?

[(C) Hidden (sigmoid)
1

Zj:

vj

14exp(—a;)’

?

(B) Hidden (linear)
aj = 3,00 @jiti, U

?

(A) Input
Given Zi, \]

24

Objective Functions for NNs

1.

Quadratic Loss:
— the same objective as Linear Regression

— i.e. mean squared error

1

J=to(y,y") =Sy —y")?
aJ)

2.

Binary Cross-Entropy:
— the same objective as Binary Logistic Regression
— i.e. negative log likelihood
— This requires our output y to be a probability in [0,1]

= ECE(Z/, y) = —(y? log(y) + (1 — y™) log(1 — v))

1
3/(2) (Z))

y—1

=

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,

W, respectively on the first layer and W5 on the second,
output layer.

Figure from Glorot & Bentio (2010)

Multiclass Output

Multiclass Output

[(F) Loss

Softmax: J =K yilog(u)

?

eXp (bk') [(E) Output (softmax)

yk - = ;Xp(bk)
zllil eXp(bl) S 2%1 exp(br)

[(D) Output (linear)
b = 31 Brjzs Vk

?

Output

(C) Hidden (nonlinear)
g5 = O'(aj), V]

?

Hidden Layer

(B) Hidden (linear)
a; = 3,00 @jiti, U

?

(A) Input
Given z;, Vi

28

Objective Functions for NNs

Cross-Entropy for Multiclass Outputs:

— i.e. negative log likelihood for multiclass outputs

— Suppose output is a random variable Y that takes one of K values
— Let y® represent our true label as a one-hot vector:

yO=lolo|lo|1]lo|lo]...] 0
1 2 3 4 5 6 .. K

— Assume our model outputs a length K vector of probabilities:

y= SOftmaX(fscores(Xr 9))

— Then we can write the log-likelihood of a single training example (x(, y()
as:

J =tcp(y,y") Zy(" log (yx)

Neural Network Errors

Question X: For which of the datasets below Question Y: For which of the datasets

does there exist a one-hidden layer neural
network that achieves zero classification
error? Select all that apply.

4A) 4 B)
+ + +
s -'-_I"_'+
> >
A C) A D) ++_+
+ + + ==
+ =+, + =+, +
4+ T+ o+
> >

below does there exist a one-hidden layer
neural network for regression that achieves
nearly zero MSE? Select all that apply.

AA) AB)
o
.‘ o.o
> >
40 4 D)
O
o o .' g
e o °

Neural Networks Objectives

You should be able to...

Explain the biological motivations for a neural network

Combine simpler models (e.g. linear regression, binary
logistic regression, multinomial logistic regression) as

components to build up feed-forward neural network

architectures

Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

Compare and contrast feature engineering with learning
features

Identify (some of) the options available when designing
the architecture of a neural network

Implement a feed-forward neural network

APPROACHES TO
DIFFERENTIATION

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{®i, Y, }is 3

79 1) 1=1 C— : : ,
2 0" = arg meméf(fe(wz), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
N T (take small steps
J fe(Z) opposite the gradient)

— Loss function

((9,y,) €R 61 =0 — . Ve(fo(wi), y,)

- VEe(fo(xi), y;)

Approaches to

S—
raining Differentiation

* Question 1:
When can we compute the gradients for an
arbitrary neural network?

* Question 2:
When can we make the gradient
computation efficient?

Training

1. Finite Difference Method

Approaches to
Differentiation

Given f : R* = RE, f(x)

Pro: Great for testing implementations of

backpropagation 8f(X)z'

Con: Slow for high dimensional inputs / Compute Vi, J
outputs Ox;
Required: Ability to call the function f(x) on

any input x

2. Symbolic Differentiation

Note: The method you learned in high-school

Note: Used by Mathematica / Wolfram Alpha
[Maple
Pro: Yields easily interpretable derivatives

Con: Leads to exponential computation time
if not carefully implemented

Required: Mathematical expression that
defines f(x)

36

Approaches to

S—
raining Differentiation

3. Automatic Differentiation - Reverse Mode

; . A B
— Note: Called Backpropagation when applied Given f : R™ — R”, f(x)

to Neural Nets 3f(X)i
— Pro: Computes partial derivatives of one Compute B Vi, j
output f(x), with respect to all inputs x; in 14

time proportional to computation of f(x)

— Con: Slow for high dimensional outputs (e.g.
vector-valued functions)

— Required: Algorithm for computing f(x)
4. Automatic Differentiation - Forward Mode

— Note: Easy to implement. Uses dual
numbers.

- Pro: Computes partial derivatives of all
outputs f(x); with respect to one input x; in
time proportional to computation of f(xS

— Con: Slow for high dimensional inputs (e.g.
vector-valued x)

— Required: Algorithm for computing f(x)

37

THE FINITE DIFFERENCE METHOD

Training Finite Difference Method

The centered finite difference approximation is:

9 (JO+e-d)—J(O—c-dy))
%J(é’) R 5 (1)

where d; is a 1-hot vector consisting of all zeros except for the th

entry of d;, which has value 1. N

Notes:

* Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples

with an appropriately
chosen epsilon C L >

Training Differentiation Quiz

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(zz) log(2) | ooy

Answer: Answers below are in the form [dy/dx, dy/dz]

A. [42,-72] E. [1208, 810]
B 72, -42] F. [810,1208]
C. [100,127] G. [1505,94]
D. [127,100] H. [94,1505]

Training Differentiation Quiz

Differentiation Quiz #2:
A neural network with 2 hidden layers can be written as:

y=o(B o((@?) o ((@P)x))
wherey € R, x € RP” 3 ¢ RP® and o isa D& x DGE-1)
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(ay),...,0(ax)]*

Let o be sigmoid: o(a) = 1+e:}3p—a

. Oy Oy .
What is 5z~ and ® forall i, 5.
J

B oo

THE CHAIN RULE OF CALCULUS

Training Chain Rule

Whiteboard
— Chain Rule of Calculus

Training Chain Rule

e

Training Chain Rule

BACKPROPAGATION OF ERRORS

Erro
rB
ack-Propag
ation

50

Err
or B
a
ck-Propag
atio
N

51

Err
or B
a
ck-Propag
atio
N

52

Error Back-Propagation

53

Error Back-Propagation

54

Error Back-Propagation

55

Erro
rB
ack-Propag
ation

56

Error Back-Propagation

57

Error Back-Propagation

Error Back-Propagation

59

FORWARD COMPUTATION FOR A
COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— From equation to forward computation

— Representing a simple function as a
computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(xz) log () | oy

BACKPROPAGATION FOR A
COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(xz) log () | oy

Training Backpropagation

Simple Example: The goal is to compute J = cos(sin(z?) + 322)

on the forward pass and the derivative j—i on the backward pass.
Forward
J = cos(u)

U = Ui + U9

up = sin(t)

Training

Simple Example:

Backpropagation

The goal is to compute J = cos(sin(z?) + 3z°)

on the forward pass and the derivative fi—i on the backward pass.

Forward

J = cos(u)
U = Ui + U9

up = sin(t)

Backward
Z—i += —sin(u)
0, dJdu e A dTdu du
du1 du duy’ dug duo du dus’ dus
ﬂ += d—J% % = cos(t)
dt dui dt = dt
A, Al du du
dt dus dt = dt
dJ dJ dt dt
21

—_— = — — — =
dx dt dx’ dx

Training Backpropagation

Case 1:
Logistic
Regression

Forward

J =y logy + (1 —y*)log(l —y)

Training

Case 1:
Logistic
Regression

Forward

J =y logy + (1 - y") log(1 — y)

1
YT+ exp(—a)

D
a=) bz
j=0

Backpropagation

Backward

dJ * 1 — o
_y d-y)

dy y y — 1

dJ . dJ dy dy _ exp(—a)

df; — da df;’ do;

dr; dadzx;’ dz;

da dyda’ da (exp(—a)+1)2
dJ dJ da da

103

dJ _dJ da da

=0,

TRAINING /| FORWARD COMPUTATION
| BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

O >
7 cR™ - PR
7SS c S L

I]~ oL ¢ MxD,

N0
| \ Z =& O((l)-'— O]
§ & @ R (689

71

Training Backpropagation

Whiteboard

— Example: Backpropagation for Neural Network
with 2-Hidden Layers
* SGD Training
* Forward Computation
* Computation Graph
* Backward Computation

