10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation
4F
Deep Learning

Matt Gormley
Lecture 13
Feb. 26, 2023

Reminders

* Homework 5: Neural Networks
— Out: Sun, Feb 26
— Due: Fri, Mar 17 at 11:59pm

BACKPROPAGATION FOR A
SIMPLE COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— From equation to forward computation
— Representing a simple function as a computation
graph
— Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(2) A log(x) | Xz

Training Backpropagation

Simple Example: The goal is to compute J = cos(sin(z?) + 322)

on the forward pass and the derivative j—i on the backward pass.
Forward
J = cos(u)

U = Ui + U9

up = sin(t)

Training

Simple Example:

Backpropagation

The goal is to compute J = cos(sin(z?) + 3z°)

on the forward pass and the derivative fi—i on the backward pass.

Forward

J = cos(u)
U = Ui + U9

up = sin(t)

Backward
Z—i += —sin(u)
0, dJdu e A dTdu du
du1 du duy’ dug duo du dus’ dus
ﬂ += d—J% % = cos(t)
dt dui dt = dt
A, Al du du
dt dus dt = dt
dJ dJ dt dt
21

—_— = — — — =
dx dt dx’ dx

BACKPROPAGATION FOR BINARY
LOGISTIC REGRESSION

Training Backpropagation

Case 1:
Logistic
Regression

Forward

J =y logy + (1 —y*)log(l —y)

Training Backpropagation

Case 1:

Logistic

Regression

Forward

B J=y logy+ (1 —y*)log(1 —y) y+(y_1)
B 1 dJdy dy exp(—a)

YTIT exp(—a) dy da’ da (exp(—a) + 1)2
- g
dJ da da _ .
da d9j7 d(gj -
— A
dJ da da _ 0.
da dv;’ dx;

TRAINING /| FORWARD COMPUTATION
| BACKWARD COMPUTATION

Training

Output

Weights

Hidden Layer

Weights

Forward-Computation

[(E) Output (sigmoid)
_ 1
Y = T¥exp(—0p)

?

[(D) Output (linear)

D
b=2_ "0 Pz
(C) Hidden (sigmoid)
<5 = 1—|—exp1(—aj)’ vj
(B) Hidden (linear)
a; = it i, Vi

[(A) Inzut]

Given x;, Vi

Training

Output

Weights

Hidden Layer

Weights

Forward-Computation

(F) Loss
J=350y—y)
?

[(E) Output (sigmoid)
_ 1
Y= TFexp(—p)

f

[(D) Output (linear)
b=3"1"0B)%

?

[(C) Hidden (sigmoid)

—/

Zj = 14exp(—a;)’ \V/]
(B) Hidden (linear)
aj = Z@-]\io i Ti, VJ

?

(A) Input
Given x;, Vi

Training

Output

Weights

Hidden Layer

Weights

Forward-Computation

[(E) Output (sigmoid)
_ 1
Y= Trexp(—b)

?

[(D) Output (linear)
b=3"1"0B5%

?

[(C) Hidden (sigmoid)

—

7 = 14+exp(—aj)’ \V/]
(B) Hidden (linear)
a; = > img 0ii, V]

?

(A) Input
Given x;, Vi

Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D,)
2 Initialize parameters o, 3

3: fore € {1,2,...,F} do +—

4: for (x,y) € Ddo «—
5
6
7

Compute neural network layers:
= object(x,a,b,z,y,J) = NNFORWARD(X,y, o, 3)

Compute gradients via backprop:

8a = vaJ
8: — = NNBACKWARD(X,y, ¢, 3, 0)
Eg = VQJ

o: Update parameters:

10: a— o —Vga

11: B—pB—gs

12: Evaluate training mean cross-entropy Jp (o, 3)
13: Evaluate test mean cross-entropy Jp, («,

3 esgmeap Py Jp, (e, B)

14: return parameters o,

Training
Case 2: Forward
Neural .
J=vy"logy+ (1 —
Network y"logy +
Output —_— 1
i /;%\ YTy exp(—b)
» D
b= Zﬁjzj
=0
1
o —
7 1+ exp(—ay)
M
CLj = Z Oéjq;ZCZ
i=0

Backpropagation

y*)log(1 —y)

Backward
dJ * 1—y*

_y A=y
dy vy y—1
dJ dJdy dy exp(—b)
dv dydb’ db (exp(—b) + 1)2
d_J _dJ db db _
dp; — dbdp;’ dp;
dJ dJ db db _ 3
de B db de’ de -
dJ dJdz dz; exp(—ay)
da; dzjda;’ da; (exp(—a;) + 1)2
dJ dJ da; da; .
dozjz- B daj dOéjZ" dOtjz' -

dJ da; da;

dmZ Z da,J dr;’ dxr; A

21

J=y"logy + (1 —y")log(l —y)

Training
Cace Forward
4# Loss
_ 1
Sigmoid YT 1 exp(—b)
D
b=>_ Bz
Linear =0
0 0 1
Sigmoid % =3 T exp(—a;)
M
a; — Z QL4
: i=0
Linear

Backpropagation
P

Bgckward

exp(—b)

B (exp(—b) + 1)2

exp(—ay)

~ (exp(—ay) + 1)2

Derivative of a Sigmoid

First suppose that 3= O-(V)

1

T + exp(—b))
To obtain the simplified form of the derivative of a sigmoid.
ds exp(—b) 44—
db ~ (exp(~b) +1)? @)
 exp(-b)+1-1
" (exp(=b)+ 1+ 1—1)2 G)
_exp(=b)+1-1
= lexp(=b) + 1)? @
_ exp(-b)+1 1 (5)
" exp(-0) + 17 (exp(=b) + 1)? ’
_ 1 (6)
(exp(—=b)+1) (exp(—=b) 4+ 1)2
1 1
e rnl (e @)
1 1
~ e+ (1~ Een) ©
=s(l-s) @— (9)

Training
Cace o Forward
Loss J=y"logy + (1 —

Sigmoid

Linear

Sigmoid

Linear

1
YTIT exp(—b)
D
b = Zﬁjzj
7=0
1
P
7 1+ exp(—ay)
M
a; — Z Qg
1=0

Backpropagation

y*)log(1 — y)

Backward
dJ * 1—y*
_y 0=y
dy Yy y—1
dJ dJdy dy exp(—b)
db dydb’ db (exp(—b)+ 1)2
dJ dJ db db _
dp; — dbdp;’ dp;
dJ dJ db db _ 3,
de - db de’ de -
dJ dJdz; dz; exp(—ay)
da; dzjda;’ da; (exp(—a;)+ 1)2

dJ dJ da; da;
dOéj,,; - daj dOéji’ dOéjz'

Z dJ da; da;
¢ da dr;’ dz;

dxz

Training
Cace > Forward
Loss J=y"logy + (1 —
B 1
D
b = Z Bij
Linear J=0
0 0 1
o =
Sigmoid i = 1+ exp(—a;)
M
aj = Z Ozjz‘CIZZ
. i=0
Linear

Backpropagatlogm

o\\)\?-\A ;
Y \
Backward N Q"b\f'\"w"
: i _y (1—y")]'
y~) log(l —y = = +
) log(1 —y) ol
J _dldy dy _
db dydb db o 7
drdv db _
db dB;’ dp,; -
al _dld db J
de - db de’ de -

dJ dJ dz; dz;
da; B dz; da,J-’ daj- :Zj(l _Zj)
J j J

dJ daj daj —
daj dOéji’ dOéjz' -

dJ = dJ da; da;
da:i - - daj dCIZZ‘7 d:Uz
7=0

Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D,)
2 Initialize parameters «, 3

3 fore € {1,2,...,F}do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o = object(x,a,b,z,y,J) = NNFORWARD (X, y, , 3)
Compute gradients via backprop:

8: Sa = VaJ} — NNBACKWARD(x,y,a,,B,O)>
gs = VpJ

o: Update parameters:

10: a— a— Vga

11: B—pB—gs

12: Evaluate training mean cross-entropy Jp (o, 3)

13: Evaluate test mean cross-entropy Jp, (a, 3)

14: return parameters o, 3

TRAINING | FORWARD COMPUTATION
| BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

B € RP2
2
B, €R y = o((B)'7 +Fy)
a(Z) = RMXDZ Z(Z) _ G((a(Z))TZ(l) + b(z))
b € RP2
;D G((a(l))Tx + pM)
a(l) = RMXDl

bV € RP1

28

Training Backpropagation

Whiteboard

— Example: Backpropagation for Neural Network
with 2-Hidden Layers
* SGD Training
* Forward Computation
* Computation Graph
* Backward Computation

THE BACKPROPAGATION
ALGORITHM

Training Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
directed acyclic graph, where each variable is a node (i.e. the “comp?tgion

graph”)

2. Visit each node in topological order.
For variable u, with inputs v,,..., vy
a. Compute u,=g(v,..., Vy)
b. Store the result at the node

vg, kLo 0O
Backward Computation (Version A) Y
1. Initialize dy/dy = 1.
2.

Visit each node v; in reverse topological order.
Let u,..., uy denote all the nodes with v;as an input Vi L V2 D)? \{; R
Assuming that y = h(u) = h(u,,..., uy)
and u = g(v) or equivalently u; = g(v,,..., Vj,..., vy) for all i
—a. We already know dy/du, for all i
b. Compute dy/dv; as below (Choice of algorithm ensures computing

(dUi/de) is easy5 dy M dy du;

%j -~ i1 dui d’l}j

Return partial derivatives dy/du;for all variables

Training Backpropagation

Training Backpropagation

Why is the backpropagation algorithm efficient?

1.

Reuses computation from the forward pass in
the backward pass

Reuses partial derivatives throughout the
backward pass (but only if the algorithm reuses
shared computation in the forward pass)

(Key idea: partial derivatives in the backward

pass should be thought of as variables stored
for reuse)

33

- VEe(fo(xi), y;)

MATRIX CALCULUS

Do | need to know matrix calculus to derive the

backprop algorithms used in this class?

Well, we’ve carefully constructed our assignments
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix
calculus to our learning objectives for backprop.

Matrix Calcu

Lety, z € Rbescalars,

y € R®andx € R”
be vectors, and

Y €]RMXN andX €
RP*Q be matrices

Denominator

Numerator
\
Ty p € .O f calar vector matrix
Derivatives / \
7 X\ __—
Jdy \| dy | 0Y

scalar ,

Ox

oz

E

vector

9y
Ox

Oy
Ox

oY
Ox

-

matrix

\/%y(/

dy

X

0Y

0X

Matrix Calculus

Types O
y p) f scalar
Derivatives —
ay _ [0y
scalar — = a_]
ox T
-y -
8331
o o
ozx
vector 99 _ _2
ox :
- °
Oy
| Oz p
- Oy oy Oy 1
8X11 15, 8X1Q
. Oy Y Oy
matrix Oy 0X21 (9Xa2 8X20
0X : :
I Oy Oy Oy
| 9Xp1 OXpo 8Xprg

38

Matrix Calculus

s f)f scalar vector
Derivatives
J
| @ — [@] 8_y [% Oyz oyn
scatar Or — Lox Or T Ox Ox
/) a@_y) L Oy Oy2
ail:;l (gxl g.’Bl
a. Y1 Y2
oy _ | 9=2 Oy 9z | | Bzs
vector 8X & g
2| TV o || o |
TP _Oxp ox p \
| § =

Matrix Calculus

Whenever you read about matrix calculus, you’ll be confronted with two
layout conventions:

Let y, z € Rbescalars,y € RM and x € RY be vectors.

1. In numerator layout: In this course, we
use denominator
oy . o layout.
I isa 1 x P matrix, i.e. arow vector
y . . Why? This
5y 153N M x P matrix ensures that our
X gradients of the
@ objective
2. In denominator layout: function with
respect to some
Oy . P x 1 matrix. i | ¢ subset of
p isa P x 1 matrix, i.e. a column vector parameters are
dy the same shape
— isan P x M matrix as those
ox parameters.

r

Matrix Calculus

): Cew\w‘em Vecl-or D&n\ﬂ-l'n\/e S
Let igglz VXSY\(?S b Y vechs Jan'\«.-,-ivt 5 ;r/ @Q]RMXV'

x e R™
S(.a Lr Dm\u'{’l\rc \/e Ju- @m\w}wg
E@_ — é‘?x ?(x) 4" —é—i.b -2
_331, - b xB — B
Xy % xbh — b
X' = 2y X'x —> 2x
E(Z — Dpx X Bx — 28x

Matrix Calculus

Recall: a_y SOy, dys . Oun
a 8.’131 8331 81‘1
9y1 Oy2 Oy~

Question: Q1 ov_ || oy (s B

Suppose y = g(u) and u = h(x) | 92s | on w . o

(9£L‘p 8.’Ep 8.’1313_

Answer: 9 _
Y I A. g—i% SO"o

oy T du
HEEN B. o o

h T c dy ou’l
" Ou Ox
oy L ou?
x [T p. o 0u
Oy Ou
Which of the following is the du ax)
correct definition of the chain rule? DNone e e b

G=4oxic

E. (5

DRAWING A NEURAL NETWORK

Ways of Drawing Neural Networks

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation

44

Ways of Drawing Neural Networks

g o Q QML Computation Graph
* The diagram represents an algorithm

S kl) (2)
: - FL °‘
q\ca

->(1—)

i‘x(z)
- (.‘) | — !
z
D =iES
()

Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

Edges are directed

Edges do not have labels (since they don’t
need them)
For neural networks:

— Eachintercept term should appear as a node
(if it’s not folded in somewhere)

— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss

45

Ways of Drawing Neural Networks
[(F) Loss] Computation Graph

J=1(y—y*)?

?

e The diagram represents an algorithm
* Nodes are rectangles

* One node per intermediate variable in the
algorithm

[(E) Output (sigmoid) 6 (E’) Label
= 1 : * * Nodeis labeled with the function that it
Y Trewlh) Giveny computes (inside the box) and also the

f v variable name (outside the box)
) * Edgesaredirected

[(D) Output (linear)

\

(since they don’t

D
\ b=7>i—0Biz) need them)
f‘ /\ For neural networks:
e — — Eachintercept term should appear as a node
(C) Hidden (sigmoid) (C’) Parameters (if it’s not folded in somewhere)
o — 1 /i . _ — Each parameter should appear as a node
J 7 Ttexp(—a;)’ "/ Given J;, Vj — Each constant, e.g. a true label or a feature
f vector should appear in the graph
— It’s perfectly fine to include the loss

(B) Hidden (linear)
a; = Zé\io QjiTiy V]
?

(A) Input
Given x;, Vi

(A’) Parameters

Given Qg \V/Z,]

46

Ways of Drawing Neural Networks

Neural Network Diagram

The diagram represents a neural network
Nodes are circles

One node per hidden unit

Node is labeled with the variable
corresponding to the hidden unit

For a fully connected feed-forward neural
network, a hidden unit is a nonlinear
function of nodes in the previous layer

Edges are directed

Each (side
note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

Other details:

— Following standard convention, the
intercept term is NOT shown as a node, but
rather is assumed to be part of the non-

linear function that yields a hidden unit. (i.e.

its weight does NOT appear in the picture
anywhere)

— The diagram does NOT include any nodes
related to the loss computation

Computation Graph

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)
For neural networks:

— Eachintercept term should appear as a node
(if it’s not folded in somewhere)

— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph

— It’s perfectly fine to include the loss

Important!

Some of these conventions are
specific to 10-301/601. The literature
abounds with varations on these

conventions, but it’s helpful to have

some distinction nonetheless.

Summary

1. Neural Networks...

provide a way of learning features
are highly nonlinear prediction functions

(can be) a highly parallel network of logistic
regression classifiers

discover useful hidden representations of the
input

2. Backpropagation...

provides an efficient way to compute gradients

is a special case of reverse-mode automatic
differentiation

Backprop Objectives

You should be able to...

Differentiate between a neural network diagram and a computation graph
Construct a computation graph for a function as specified by an algorithm
Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the given
and intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when
the parameters of a model are comprised of several matrices corresponding to
different layers of a neural network

Apply the empirical risk minimization framework to learn a neural network
Use the finite difference method to evaluate the gradient of a function

Identify when the gradient of a function can be computed at all and when it can
be computed efficiently

Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

DEEP LEARNING

Why is everyone talking
about Deep Learning?

* Because alot of money isinvested in

It... | | G ¢ ,gle
— DeepMind: Acquired by Google for $400
million @ i
— Deep Learning startups command millions | & £, ou
of VC dollars -

— Demand for deep learning engineers
continually outpaces supply

* Because it made the front page of the
New York Times

Petuum’

Ehe New Jork Times

Why is everyone talking
about Deep Learning:

(iweos Deep learning:
— Has won numerous pattern recognition

~

("1980s competitions
& — Does so with minimal feature
(31990s engineering

—

%2006

/
\

e

5 2023

-

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply
fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary
gradients.

