10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation $+$ Deep Learning

Matt Gormley Lecture 13
Feb. 26, 2023

Reminders

- Homework 5: Neural Networks
- Out: Sun, Feb 26
- Due: Fri, Mar 17 at 11:59pm

Algorithm

BACKPROPAGATION FOR A SIMPLE COMPUTATION GRAPH

Training

Backpropagation

Whiteboard

- From equation to forward computation
- Representing a simple function as a computation graph
- Backprogation on a simple computation graph

Differentiation Quiz \#1:

Suppose $x=2$ and $z=3$, what are $\mathrm{dy} / \mathrm{dx}$ and $\mathrm{dy} / \mathrm{dz}$ for the function below? Round your answer to the nearest integer.

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{x z}
$$

Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

Forward
$J=\cos (u)$
$u=u_{1}+u_{2}$
$u_{1}=\sin (t)$
$u_{2}=3 t$
$t=x^{2}$

Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

Forward	Backward
$J=\cos (u)$	$\frac{d J}{d u}+=-\sin (u)$
$u=u_{1}+u_{2}$	$\frac{d J}{d u_{1}}+=\frac{d J}{d u} \frac{d u}{d u_{1}}, \quad \frac{d u}{d u_{1}}=1 \quad \frac{d J}{d u_{2}}+=\frac{d J}{d u} \frac{d u}{d u_{2}}, \quad \frac{d u}{d u_{2}}=1$
$u_{1}=\sin (t)$	$\frac{d J}{d t}+=\frac{d J}{d u_{1}} \frac{d u_{1}}{d t}, \quad \frac{d u_{1}}{d t}=\cos (t)$
$u_{2}=3 t$	$\frac{d J}{d t}+=\frac{d J}{d u_{2}} \frac{d u_{2}}{d t}, \quad \frac{d u_{2}}{d t}=3$
$t=x^{2}$	$\frac{d J}{d x}+=\frac{d J}{d t} \frac{d t}{d x}, \quad \frac{d t}{d x}=2 x$

Algorithm

BACKPROPAGATION FOR BINARY LOGISTIC REGRESSION

Training

Backpropagation

Case 1:
Logistic
Regression
Forward
$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$
$y=\frac{1}{1+\exp (-a)}$
$a=\sum_{j=0}^{D} \theta_{j} x_{j}$

Training

Backpropagation

Forward
$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$
$y=\frac{1}{1+\exp (-a)}$
$a=\sum_{j=0}^{D} \theta_{j} x_{j}$

Backward

$$
\begin{aligned}
& \left(\frac{d J}{d y}\right)=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
& \left(\frac{d J}{d a}\right)=\frac{d J}{d y} \frac{d y}{d a}, \frac{d y}{d a}=\frac{\exp (-a)}{(\exp (-a)+1)^{2}} \\
& \left(\frac{d J}{d \theta_{j}}=\frac{d J}{d a} \frac{d a}{d \theta_{j}}, \frac{d a}{d \theta_{j}}=x_{j}\right. \\
& \left(\frac{d J}{d x_{j}}=\frac{d J}{d a} \frac{d a}{d x_{j}}, \frac{d a}{d x_{j}}=\theta_{j}\right.
\end{aligned}
$$

A 1-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Training

Forward-Computation

Training

Forward-Computation

Training

Forward-Computation

Training

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    1: procedure \(\operatorname{SGD}\) (Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
            Initialize parameters \(\alpha, \beta\)
            for \(e \in\{1,2, \ldots, E\}\) do
            for \((\mathbf{x}, \mathbf{y}) \in \mathcal{D}\) do
                Compute neural network layers:
                \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                Compute gradients via backprop:
                \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \frac{\mathrm{~g}_{\boldsymbol{\beta}}}{}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
    9:
                Update parameters:
                \(\alpha \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
                \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
            Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
            Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
    return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


Training

Backpropagation

Case 2:
 Neural
 Network

Forward

$$
\begin{aligned}
& J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \\
& y=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j}
\end{aligned}
$$

$$
z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}
$$

$$
a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
$$

Backward

$$
\frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}
$$

$$
\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}}
$$

$$
\frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j}
$$

$$
\frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Training

Backpropagation

$\frac{\partial J}{\partial J}=1$

Case 2:
Loss
Sigmoid

Linear

Sigmoid

Linear
Forward

$$
\begin{aligned}
& J=y^{*} \log y+(1 \\
& y=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j}
\end{aligned}
$$

$$
\begin{aligned}
& z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)} \\
& a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

Backward

$$
\begin{aligned}
& \left.\frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}\right] \\
& \frac{d J}{d b}= \\
& \left.=\frac{d J}{d y}\right) \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}} \\
& \frac{d J}{d z_{j}}=\frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d J} \frac{d b}{d a_{j}}, \frac{d b}{d z_{j}}=\beta_{j} \\
& \frac{d J}{d J}=\frac{d z_{j}}{d z_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}} \\
& \frac{d J}{d \alpha_{j i}} \frac{d a_{j}}{d a_{j}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i} \\
& \frac{d \alpha_{j i}}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
\end{aligned}
$$

Derivative of a Sigmoid

First suppose that $s=\sigma(b)$

$$
\begin{equation*}
s=\frac{1}{1+\exp (-b)} \tag{1}
\end{equation*}
$$

To obtain the simplified form of the derivative of a sigmoid.

$$
\begin{align*}
\frac{d s}{d b} & =\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1+1-1)^{2}} \tag{3}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1)^{2}} \tag{4}\\
& =\frac{\exp (-b)+1}{(\exp (-b)+1)^{2}}-\frac{1}{(\exp (-b)+1)^{2}} \\
& =\frac{1}{(\exp (-b)+1)}-\frac{1}{(\exp (-b)+1)^{2}} \tag{5}\\
& =\frac{1}{(\exp (-b)+1)}-\left(\frac{1}{(\exp (-b)+1)} \frac{1}{(\exp (-b)+1)}\right) \tag{6}\\
& =\frac{1}{(\exp (-b)+1)}\left(1-\frac{1}{(\exp (-b)+1)}\right) \tag{7}\\
& =s(1-s) \tag{8}
\end{align*}
$$

Training

Backpropagation

Case 2:
Loss
Forward

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}
$$

$$
\text { Sigmoid } \quad y=\frac{1}{1+\exp (-b)}
$$

Linear

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

Sigmoid

Linear

Backward

$$
\begin{aligned}
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Training

Backpropagation

Case 2:

Forward

Backward
Loss

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}
$$

$$
\text { Sigmoid } \quad y=\frac{1}{1+\exp (-b)}
$$

$$
\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=y(1-y)
$$

Linear

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

Sigmoid

Linear

$$
\begin{aligned}
z_{j} & =\frac{1}{1+\exp \left(-a_{j}\right)} \\
a_{j} & =\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=z_{j}\left(1-z_{j}\right)
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Training

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    1: procedure \(\operatorname{SGD}\) (Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
            Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
            for \(e \in\{1,2, \ldots, E\}\) do
            for \((\mathbf{x}, \mathbf{y}) \in \mathcal{D}\) do
                Compute neural network layers:
                \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                Compute gradients via backprop:
                \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                    Update parameters:
                \(\alpha \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
                \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
            Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
            Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
    return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Training

Backpropagation

Recall: Our 2-Hidden Layer Neural Network Question: How do we train this model?

$$
\begin{array}{cl}
\boldsymbol{\beta} \in \mathbb{R}^{D_{2}} & \\
\beta_{0} \in \mathbb{R}^{(2)} \in \mathbb{R}^{M \times D_{2}} & y=\sigma\left((\boldsymbol{\beta})^{T} \mathbf{z}^{(2)}+\beta_{0}\right) \\
\boldsymbol{\alpha}^{(2)} & \mathbf{z}^{(2)}=\sigma\left(\left(\boldsymbol{\alpha}^{(2)}\right)^{T} \mathbf{z}^{(1)}+\boldsymbol{b}^{(2)}\right) \\
\boldsymbol{b}^{(2)} \in \mathbb{R}^{D_{2}} & \mathbf{z}^{(1)}=\sigma\left(\left(\boldsymbol{\alpha}^{(1)}\right)^{T} \boldsymbol{x}+\boldsymbol{b}^{(1)}\right) \\
\boldsymbol{\alpha}^{(1)} \in \mathbb{R}^{M \times D_{1}} & \\
\boldsymbol{b}^{(1)} \in \mathbb{R}^{D_{1}} &
\end{array}
$$

Training

Backpropagation

Whiteboard

- Example: Backpropagation for Neural Network with 2-Hidden Layers
- SGD Training
- Forward Computation
- Computation Graph
- Backward Computation

THE BACKPROPAGATION ALGORITHM

Training

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(\mathbf{x})$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version A)

1. \quad Initialize $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node v_{i} in reverse topological order.

Let u_{1}, \ldots, u_{M} denote all the nodes with v_{i} as an input $\quad V_{1} L$
Assuming that $\mathrm{y}=\mathrm{h}(\mathbf{u})=\mathrm{h}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}\right)$
and $\mathbf{u}=\mathrm{g}(\mathbf{v})$ or equivalently $\mathbf{u}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}}\left(\mathrm{v}_{1}, \ldots, v_{j}, \ldots, v_{N}\right)$ for all i
\rightarrow. We already know dy/dui for all i
b. Compute $\mathrm{dy} / \mathrm{dv}_{\mathrm{j}}$ as below (Choice of algorithm ensures computing (duildv f_{j}) is easy)

$$
\frac{d y}{d v_{j}}=\sum_{i=1}^{M} \frac{d y}{d u_{i}} \frac{d u_{i}}{d v_{j}}
$$

Return partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ for all variables

Training

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(\mathbf{x})$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version B)

1. Initialize all partial derivatives $d y / \mathrm{du}_{\mathrm{i}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$. $\quad \mathrm{V}_{1} \square \quad \mathrm{~V}_{2} \square \quad V_{3} \llbracket$
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/du
b. Increment $d y / \mathrm{dv}_{\mathrm{j}}$ by $\left(\mathrm{dy}_{\mathrm{i}} / \mathrm{du}_{\mathrm{i}}\right)\left(\mathrm{du}_{\mathrm{i}} / \mathrm{dv}_{\mathrm{i}}\right)$
(Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{dv}_{\mathrm{j}}\right)$ is easy)

Training

Backpropagation

Why is the backpropagation algorithm efficient?

1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)
(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

A Recine for

Background

Gradients

1. Given training dat $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}$
2. Choose each of t

- Decision functioi $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$

Backpropagation can compute this gradient!
And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opp-site the gradient)

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta\left(\square-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)\right.
$$

MATRIX CALCULUS

Q\&A

Q: Do I need to know matrix calculus to derive the backprop algorithms used in this class?

A: Well, we've carefully constructed our assignments so that you do not need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Matrix Calculus

Let $\underline{y}, \underline{x} \in \mathbb{R}$ be scalars, $\underline{\mathbf{y}} \in \mathbb{R}^{M}$ and $\underline{\mathbf{x}} \in \mathbb{R}^{P}$ be vectors, and $\underline{\mathbf{Y}} \in \mathbb{R}^{M \times N}$ and $\underline{\mathbf{X}} \in$ $\mathbb{R}^{P \times Q}$ be matrices

Matrix Calculus

Types of Derivatives	scalar	
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$	
vector	$\underline{\partial y} \underline{y s}_{\underline{\mathbf{x}}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$	
matrix	$\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}\frac{\partial y-}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1 Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2 Q}} \\ \vdots & & & \vdots \\ \frac{\partial y}{\partial X_{P 1}} & \frac{\partial y}{\partial X_{P 2}} & \cdots & \frac{\partial y}{\partial X_{P Q}}\end{array}\right]$	$\alpha^{(1)}$

Matrix Calculus

Types of Derivatives	scalar	vector		
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x}=\left[\frac{\partial y_{1}}{\partial x}\right.$	$\frac{\partial y_{2}}{\partial x}$	$\left.\frac{\partial y_{N}}{\partial x}\right]$
vector	$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$	$\frac{\partial \mathbf{y}}{\frac{\mathbf{x}}{} \mathbf{x}}=$$\frac{\partial y_{1}}{\partial x_{1}}$ $\frac{\partial y_{1}}{\partial x_{2}}$ \vdots $\frac{\partial y_{1}}{\partial x_{1}}$	$\begin{array}{\|l} \frac{\partial y_{2}}{\partial x_{1}} \\ \frac{\partial y_{2}}{\partial x_{2}} \\ \frac{\partial y_{2}}{\partial x_{P}} \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{l}\frac{\partial y_{N}}{\partial x_{1}} \\ \frac{\partial y_{N}}{\partial x_{2}} \\ \\ \\ \frac{\partial y_{N}}{\partial x_{P}}\end{array}\right.\right]$

Matrix Calculus

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{P}$ be vectors.

1. In numerator layout:

$$
\begin{aligned}
& \frac{\partial y}{\partial \mathbf{x}} \text { is a } 1 \times P \text { matrix, i.e. a row vector } \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text { is an } M \times P \text { matrix }
\end{aligned}
$$

2. In denominator layout:

$$
\begin{aligned}
& \frac{\partial y}{\partial \mathbf{x}} \text { is a } P \times 1 \text { matrix, i.e. a column vector } \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text { is an } P \times M \text { matrix }
\end{aligned}
$$

In this course, we use denominator layout.

Why? This
ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

Matrix Calculus

Common Vector Deriutives
Let $\frac{\partial f(\vec{x})}{\partial \vec{x}}=\nabla_{x} f(\vec{x})$ be the vector derinative $f f, \underset{\substack{ \\x \in \mathbb{R}^{m}}}{m \times n}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Scahr Dervitive } \\
f(x) \rightarrow \frac{\partial f}{\partial x}
\end{array} \\
& \begin{array}{l}
\text { Veche Deruture } \\
f(x) \rightarrow \frac{\partial f}{\partial x_{x}}
\end{array} \\
& \begin{aligned}
\frac{b x}{x b} & \rightarrow \frac{b}{b} \\
\frac{x^{2}}{b^{2}} & \rightarrow 2 x \\
& \rightarrow 2 b x
\end{aligned} \\
& \begin{array}{l}
\frac{x^{\top} B}{x^{\top} b} \rightarrow \frac{B}{b} \\
\\
\frac{x^{\top} x}{x^{\top} B x} \rightarrow \frac{2 x}{\tau_{\beta}} \rightarrow \frac{2 B x}{2}
\end{array}
\end{aligned}
$$

Matrix Calculus

Question: Q1

Suppose $y=g(\mathbf{u})$ and $\mathbf{u}=\mathrm{h}(\mathbf{x})$

Which of the following is the correct definition of the chain rule?

Recall:
 $$
\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c} \overline{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}} \end{array}\right] \quad \underline{\partial \mathbf{y}} \frac{\partial \mathbf{x}}{}=\left[\begin{array}{cccc} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{1}} \\ \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{2}} \\ \vdots & & & \\ \frac{\partial y_{1}}{\partial x_{P}} & \frac{\partial y_{2}}{\partial x_{P}} & \cdots & \frac{\partial y_{N}}{\partial x_{P}} \end{array}\right]
$$

Answer: $\frac{\partial y}{\partial \mathrm{x}}=\ldots$
A. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} 50 \%$
B. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$
C. $\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}^{T}}{\partial \mathbf{x}}$
D. $\frac{\partial y}{\partial \mathbf{u}}{ }^{T} \frac{\partial \mathbf{u}^{T}}{\partial \mathbf{x}}$
E. $\left(\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{T}$
F. None of the above 1% $G=$ toxic

DRAWING A NEURAL NETWORK

Ways of Drawing Neural Networks

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
- Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
- The diagram does NOT include any nodes related to the loss computation

Ways of Drawing Neural Networks

Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
- Each intercept term should appear as a node (if it's not folded in somewhere)
- Each parameter should appear as a node
- Each constant, e.g. a true label or a feature vector should appear in the graph
- It's perfectly fine to include the loss

Ways of Drawing Neural Networks

Ways of Drawing Neural Networks

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
- Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
- The diagram does NOT include any nodes related to the loss computation

Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
- Each intercept term should appear as a node (if it's not folded in somewhere)
- Each parameter should appear as a node
- Each constant, e.g. a true label or a feature vector should appear in the graph
- It's perfectly fine to include the loss

Important!

Some of these conventions are specific to $10-301 / 601$. The literature abounds with varations on these conventions, but it's helpful to have some distinction nonetheless.

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

DEEP LEARNING

Why is everyone talking about Deep Learning?

- Because a lot of money is invested in it...
- DeepMind: Acquired by Google for $\$ 400$ million
- Deep Learning startups command millions of VC dollars

- Demand for deep learning engineers continually outpaces supply

Petuum

- Because it made the front page of the New York Times

Why is everyone talking about Deep Learning?

Deep learning:
 - Has won numerous pattern recognition competitions
 - Does so with minimal feature engineering

This wasn't always the case!
Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are simply fancy computation graphs (aka. hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on the backpropagation algorithm to compute the necessary gradients.

