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Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 26
– Due: Fri, Mar 17 at 11:59pm

2



BACKPROPAGATION FOR A 
SIMPLE COMPUTATION GRAPH

Algorithm
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Backpropagation

Whiteboard
– From equation to forward computation
– Representing a simple function as a computation 

graph
– Backprogation on a simple computation graph
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Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation
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Training

Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.
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BACKPROPAGATION FOR BINARY 
LOGISTIC REGRESSION

Algorithm
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Backpropagation
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1
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Backpropagation
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Training

…
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TRAINING / FORWARD COMPUTATION 
/ BACKWARD COMPUTATION

A 1-Hidden Layer Neural Network
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Forward-Computation
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Training

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights
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Forward-Computation
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SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



Backpropagation
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Training

Case 2:
Neural 
Network

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Training



Derivative of a Sigmoid
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Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

24

Training



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

25

Training



SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



TRAINING / FORWARD COMPUTATION 
/ BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network
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Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?
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Training
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Backpropagation

Whiteboard
– Example: Backpropagation for Neural Network 

with 2-Hidden Layers
• SGD Training

• Forward Computation

• Computation Graph

• Backward Computation
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Training



THE BACKPROPAGATION 
ALGORITHM
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)



Backpropagation

32

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in 

the backward pass
2. Reuses partial derivatives throughout the 

backward pass (but only if the algorithm reuses 
shared computation in the forward pass)

(Key idea: partial derivatives in the backward 
pass should be thought of as variables stored 
for reuse)
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Training



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



MATRIX CALCULUS
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Q&A
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Q: Do I need to know matrix calculus to derive the 
backprop algorithms used in this class?

A: Well, we’ve carefully constructed our assignments 
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix 
calculus to our learning objectives for backprop. 



Matrix Calculus
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Types of 
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or



Types of 
Derivatives scalar

scalar

vector

matrix

Matrix Calculus
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Types of 
Derivatives scalar vector

scalar

vector

Matrix Calculus
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Matrix Calculus
Whenever you read about matrix calculus, you’ll be confronted with two 
layout conventions:
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In this course, we 
use denominator 

layout. 

Why? This 
ensures that our 
gradients of the 

objective 
function with 

respect to some 
subset of 

parameters are 
the same shape 

as those 
parameters.



Matrix Calculus

41



Question:

Answer:

Matrix Calculus
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y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the 
correct definition of the chain rule?

Recall:



DRAWING A NEURAL NETWORK
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Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node 
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss

44
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(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
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�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
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Important!
Some of these conventions are 

specific to 10-301/601. The literature 
abounds with varations on these 

conventions, but it’s helpful to have 
some distinction nonetheless.



Summary

1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic 

regression classifiers
– discover useful hidden representations of the 

input

2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic 

differentiation
48



Backprop Objectives
You should be able to…
• Differentiate between a neural network diagram and a computation graph
• Construct a computation graph for a function as specified by an algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the given 

and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when 

the parameters of a model are comprised of several matrices corresponding to 
different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural network
• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and when it can 

be computed efficiently
• Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
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DEEP LEARNING
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Why is everyone talking 
about Deep Learning?

• Because a lot of money is invested in 
it…
– DeepMind:  Acquired by Google for $400 

million
– Deep Learning startups command millions 

of VC dollars
– Demand for deep learning engineers 

continually outpaces supply

• Because it made the front page of the 
New York Times

52



Why is everyone talking 
about Deep Learning?

Deep learning: 
– Has won numerous pattern recognition 

competitions
– Does so with minimal feature 

engineering
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1960s

1980s

1990s

2006

2023

This wasn’t always the case!
Since 1980s:  Form of models hasn’t changed much, 
but lots of new tricks…

– More hidden units
– Better (online) optimization
– New nonlinear functions (ReLUs)
– Faster computers (CPUs and GPUs)



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) are simply 

fancy computation graphs (aka. hypotheses or 
decision functions).

Our recipe also applies to these models and 
(again) relies on the backpropagation 
algorithm to compute the necessary 

gradients.
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