
Backpropagation
+

Deep Learning

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 13

Feb. 26, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 5: Neural Networks
– Out: Sun, Feb 26
– Due: Fri, Mar 17 at 11:59pm

2

BACKPROPAGATION FOR A
SIMPLE COMPUTATION GRAPH

Algorithm

3

Backpropagation

Whiteboard
– From equation to forward computation
– Representing a simple function as a computation

graph
– Backprogation on a simple computation graph

4

Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Backpropagation

7

Training

Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Backpropagation

8

Training

Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

BACKPROPAGATION FOR BINARY
LOGISTIC REGRESSION

Algorithm

9

Backpropagation

10

Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + 2tT(�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

2tT(�a)

(2tT(�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j

Backpropagation

11

Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + 2tT(�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

2tT(�a)

(2tT(�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j

TRAINING / FORWARD COMPUTATION
/ BACKWARD COMPUTATION

A 1-Hidden Layer Neural Network

12

Forward-Computation

13

Training

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Forward-Computation

14

Training

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Forward-Computation

15

Training

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

SGD with Backprop

16

Training

Example: 1-Hidden Layer Neural Network

Backpropagation

21

Training

Case 2:
Neural
Network

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

22

Training

Derivative of a Sigmoid

23

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

24

Training

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

25

Training

SGD with Backprop

26

Training

Example: 1-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION
/ BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network

27

Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?

28

Training

"(") = σ((& ")$(+ *("))

!!

"!(!)

!$!%

"$
(!)

#(!)

"!($) "$($)

#($)

$

%

"&!
(!)

…

…

"&"
($)…

"(%) = σ((& %)$"(") + *(%))

+ = σ((,)$"(%) + -&)

& " ∈ ℝ'×)!

*(") ∈ ℝ)!

& % ∈ ℝ'×)"

*(%) ∈ ℝ)"

, ∈ ℝ)"

-& ∈ ℝ

Backpropagation

Whiteboard
– Example: Backpropagation for Neural Network

with 2-Hidden Layers
• SGD Training

• Forward Computation

• Computation Graph

• Backward Computation

29

Training

THE BACKPROPAGATION
ALGORITHM

30

Backpropagation

31

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing

(dui/dvj) is easy)

Backpropagation

32

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in

the backward pass
2. Reuses partial derivatives throughout the

backward pass (but only if the algorithm reuses
shared computation in the forward pass)

(Key idea: partial derivatives in the backward
pass should be thought of as variables stored
for reuse)

33

Training

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

34

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

MATRIX CALCULUS

35

Q&A

36

Q: Do I need to know matrix calculus to derive the
backprop algorithms used in this class?

A: Well, we’ve carefully constructed our assignments
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix
calculus to our learning objectives for backprop.

Matrix Calculus

37

Types of
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or

Types of
Derivatives scalar

scalar

vector

matrix

Matrix Calculus

38

Types of
Derivatives scalar vector

scalar

vector

Matrix Calculus

39

Matrix Calculus
Whenever you read about matrix calculus, you’ll be confronted with two
layout conventions:

40

In this course, we
use denominator

layout.

Why? This
ensures that our
gradients of the

objective
function with

respect to some
subset of

parameters are
the same shape

as those
parameters.

Matrix Calculus

41

Question:

Answer:

Matrix Calculus

42

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the
correct definition of the chain rule?

Recall:

DRAWING A NEURAL NETWORK

43

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

44

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

45

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

46

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

47

Important!
Some of these conventions are

specific to 10-301/601. The literature
abounds with varations on these

conventions, but it’s helpful to have
some distinction nonetheless.

Summary

1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic

regression classifiers
– discover useful hidden representations of the

input

2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic

differentiation
48

Backprop Objectives
You should be able to…
• Differentiate between a neural network diagram and a computation graph
• Construct a computation graph for a function as specified by an algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the given

and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when

the parameters of a model are comprised of several matrices corresponding to
different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural network
• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and when it can

be computed efficiently
• Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

49

DEEP LEARNING

50

Why is everyone talking
about Deep Learning?

• Because a lot of money is invested in
it…
– DeepMind: Acquired by Google for $400

million
– Deep Learning startups command millions

of VC dollars
– Demand for deep learning engineers

continually outpaces supply

• Because it made the front page of the
New York Times

52

Why is everyone talking
about Deep Learning?

Deep learning:
– Has won numerous pattern recognition

competitions
– Does so with minimal feature

engineering

53

1960s

1980s

1990s

2006

2023

This wasn’t always the case!
Since 1980s: Form of models hasn’t changed much,
but lots of new tricks…

– More hidden units
– Better (online) optimization
– New nonlinear functions (ReLUs)
– Faster computers (CPUs and GPUs)

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are simply

fancy computation graphs (aka. hypotheses or
decision functions).

Our recipe also applies to these models and
(again) relies on the backpropagation
algorithm to compute the necessary

gradients.

54

