

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation + Deep Learning

Matt Gormley Lecture 13 Feb. 26, 2023

Reminders

- Homework 5: Neural Networks
 - Out: Sun, Feb 26
 - Due: Fri, Mar 17 at 11:59pm

Algorithm

BACKPROPAGATION FOR A SIMPLE COMPUTATION GRAPH

Backpropagation

Whiteboard

- From equation to forward computation
- Representing a simple function as a computation graph
- Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

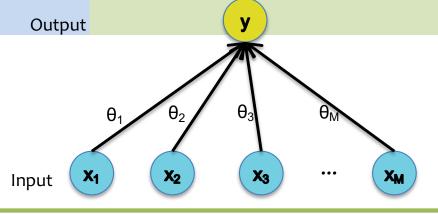
Forward	Backward
J = cos(u)	du
$u = u_1 + u_2$	$\frac{dJ}{du_1} += \frac{dJ}{du}\frac{du}{du_1}, \frac{du}{du_1} = 1 \qquad \qquad \frac{dJ}{du_2} += \frac{dJ}{du}\frac{du}{du_2}, \frac{du}{du_2} = 1$
$u_1 = sin(t)$	$\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \frac{du_1}{dt} = \cos(t)$
$u_2 = 3t$	$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \frac{du_2}{dt} = 3$
$t = x^2$	$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \frac{dt}{dx} = 2x$

Algorithm

BACKPROPAGATION FOR BINARY LOGISTIC REGRESSION

Backpropagation

Case 1: Logistic Regression



Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backpropagation

Case 1: Logistic Regression



Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

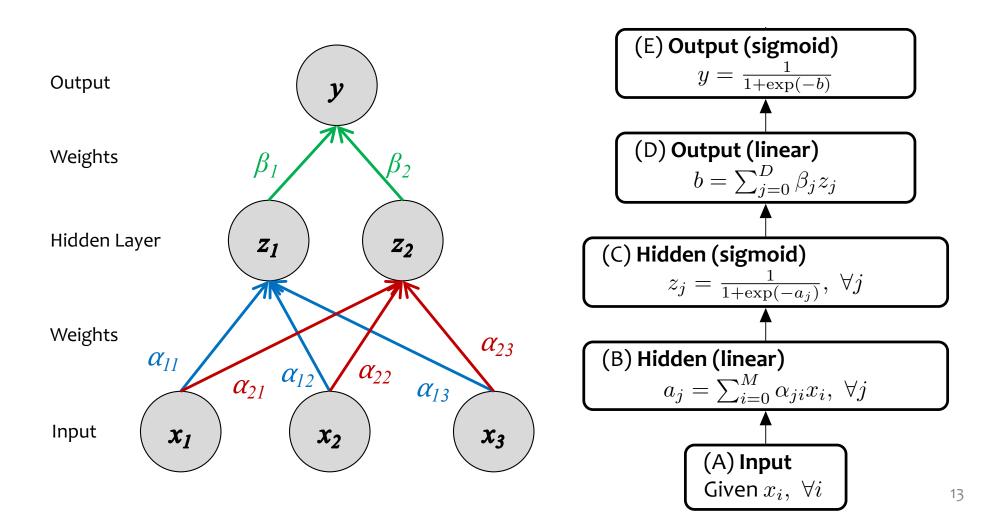
$$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$$

$$\frac{dJ}{dx_j} = \frac{dJ}{da}\frac{da}{dx_j}, \, \frac{da}{dx_j} = \theta_j$$

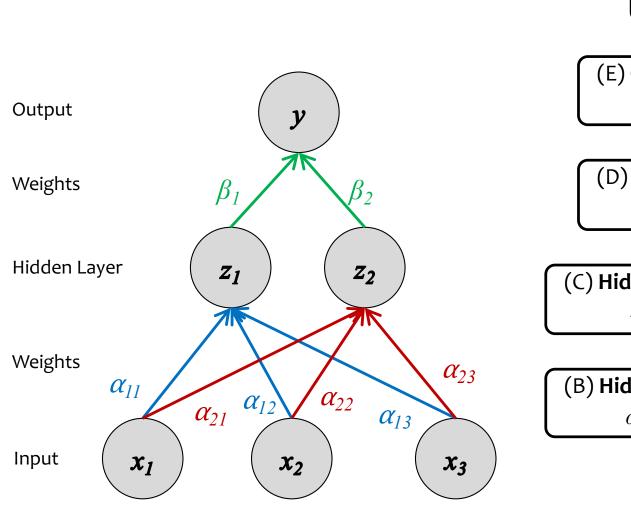
A 1-Hidden Layer Neural Network

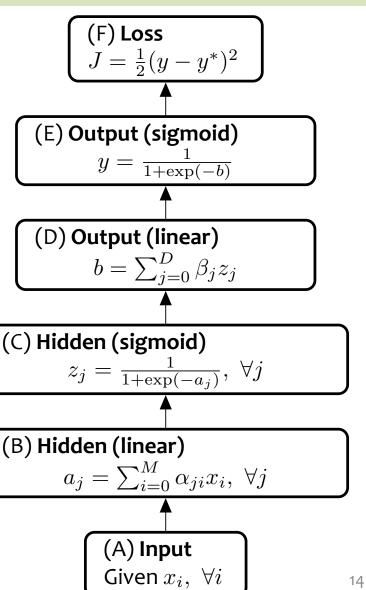
TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Forward-Computation

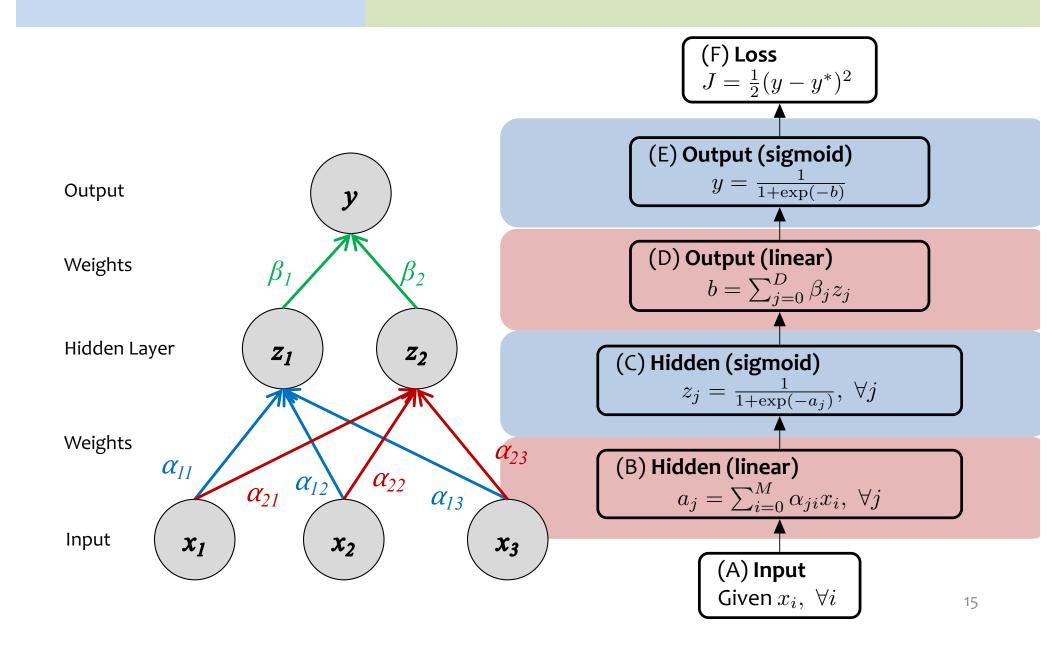


Forward-Computation





Forward-Computation



SGD with Backprop

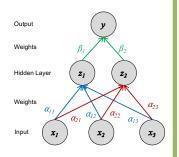
Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
```

```
1: procedure SGD(Training data \mathcal{D}_t, test data \mathcal{D}_t)
               Initialize parameters \alpha, \beta
 2:
               for e \in \{1, 2, ..., E\} do
 3:
                       for (\mathbf{x}, \mathbf{y}) \in \mathcal{D} do
 4:
                               Compute neural network layers:
 5:
                               \mathbf{o} = \mathtt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \mathsf{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})
 6:
                                Compute gradients via backprop:
 7:
                              \left. egin{aligned} \mathbf{g}_{oldsymbol{lpha}} &= 
abla_{oldsymbol{lpha}} J \ \mathbf{g}_{oldsymbol{eta}} &= 
abla_{oldsymbol{eta}} J \end{aligned} 
ight. = 	ext{NNBACKWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta}, \mathbf{o})
 8:
                                Update parameters:
 9:
                               \alpha \leftarrow \alpha - \gamma \mathbf{g}_{\alpha}
10:
                               \boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \gamma \mathbf{g}_{\boldsymbol{\beta}}
11:
                        Evaluate training mean cross-entropy J_{\mathcal{D}}(\boldsymbol{\alpha},\boldsymbol{\beta})
12:
                        Evaluate test mean cross-entropy J_{\mathcal{D}_t}(\boldsymbol{\alpha},\boldsymbol{\beta})
13:
               return parameters \alpha, \beta
14:
```

Backpropagation

Case 2: Neural Network



Forward

$$y = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$

Derivative of a Sigmoid

First suppose that

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2} \tag{2}$$

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1+1-1)^2}$$
(3)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
 (4)

$$= \frac{\exp(-b) + 1}{(\exp(-b) + 1)^2} - \frac{1}{(\exp(-b) + 1)^2}$$
 (5)

$$= \frac{1}{(\exp(-b)+1)} - \frac{1}{(\exp(-b)+1)^2} \tag{6}$$

$$= \frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)} \frac{1}{(\exp(-b)+1)}\right)$$
 (7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)}\right) \tag{8}$$

$$=s(1-s) \tag{9}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	and the second
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$ \frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j $ $ \frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j $
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$ $\frac{dJ}{dx_{i}} = \sum_{j=0}^{D} \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \alpha_{ji}$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = y(1-y)$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$ \frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = z_j (1 - z_j) $
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
```

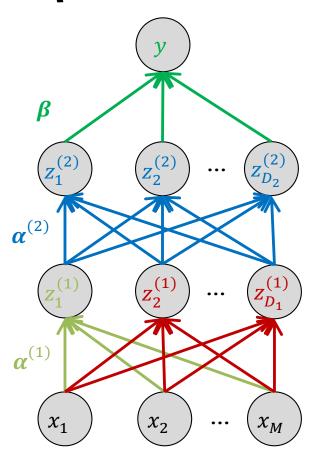
```
1: procedure SGD(Training data \mathcal{D}_t, test data \mathcal{D}_t)
               Initialize parameters \alpha, \beta
 2:
               for e \in \{1, 2, ..., E\} do
 3:
                       for (\mathbf{x}, \mathbf{y}) \in \mathcal{D} do
 4:
                               Compute neural network layers:
 5:
                               \mathbf{o} = \mathtt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \mathsf{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})
 6:
                                Compute gradients via backprop:
 7:
                              \left. egin{aligned} \mathbf{g}_{oldsymbol{lpha}} &= 
abla_{oldsymbol{lpha}} J \ \mathbf{g}_{oldsymbol{eta}} &= 
abla_{oldsymbol{eta}} J \end{aligned} 
ight. = 	ext{NNBACKWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta}, \mathbf{o})
 8:
                               Update parameters:
 9:
                               \alpha \leftarrow \alpha - \gamma \mathbf{g}_{\alpha}
10:
                               \boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \gamma \mathbf{g}_{\boldsymbol{\beta}}
11:
                        Evaluate training mean cross-entropy J_{\mathcal{D}}(\boldsymbol{\alpha},\boldsymbol{\beta})
12:
                        Evaluate test mean cross-entropy J_{\mathcal{D}_t}(\boldsymbol{\alpha},\boldsymbol{\beta})
13:
               return parameters \alpha, \beta
14:
```

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Backpropagation

Recall: Our 2-Hidden Layer Neural Network **Question:** How do we train this model?



$$eta \in \mathbb{R}^{D_2}$$
 $eta_0 \in \mathbb{R}$
 $oldsymbol{lpha}^{(2)} \in \mathbb{R}^{M imes D_2}$
 $oldsymbol{b}^{(2)} \in \mathbb{R}^{D_2}$
 $oldsymbol{a}^{(1)} \in \mathbb{R}^{M imes D_1}$
 $oldsymbol{b}^{(1)} \in \mathbb{R}^{D_1}$

$$y = \sigma((\boldsymbol{\beta})^T \mathbf{z}^{(2)} + \beta_0)$$

$$\mathbf{z}^{(2)} = \sigma((\boldsymbol{\alpha}^{(2)})^T \mathbf{z}^{(1)} + \boldsymbol{b}^{(2)})$$

$$\mathbf{z}^{(1)} = \sigma((\boldsymbol{\alpha}^{(1)})^T \boldsymbol{x} + \boldsymbol{b}^{(1)})$$

Backpropagation

Whiteboard

- Example: Backpropagation for Neural Network with 2-Hidden Layers
 - SGD Training
 - Forward Computation
 - Computation Graph
 - Backward Computation

THE BACKPROPAGATION ALGORITHM

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.
 - For variable u_i with inputs v_1, \dots, v_N
 - a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version A)

- **Initialize** dy/dy = 1.

Visit each node v_j in **reverse topological order**. Let u_1, \ldots, u_M denote all the nodes with v_j as an input

Assuming that $y = h(\mathbf{u}) = h(u_1, ..., u_M)$ and $\mathbf{u} = g(\mathbf{v})$ or equivalently $u_i = g_i(v_1, ..., v_j, ..., v_N)$ for all i a. We already know dy/du_i for all i

- b. Compute dy/dv_i as below (Choice of algorithm ensures computing

$$\frac{(du_i/dv_j) \text{ is easy}}{dv_j} = \sum_{i=1}^{M} \frac{dy}{du_i} \frac{du_i}{dv_j}$$

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.

For variable u_i with inputs $v_1, ..., v_N$

- a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version B)

- **Initialize** all partial derivatives dy/du_i to 0 and dy/dy = 1.
- Visit each node in reverse topological order.

```
For variable u_i = g_i(v_1, ..., v_N)
```

- a. We already know dy/dui
- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j)
 (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Backpropagation

Why is the backpropagation algorithm efficient?

- Reuses computation from the forward pass in the backward pass
- 2. Reuses **partial derivatives** throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)

(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of tl
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

MATRIX CALCULUS

Q&A

- **Q:** Do I need to know **matrix calculus** to derive the backprop algorithms used in this class?
- A: Well, we've carefully constructed our assignments so that you do **not** need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Numerator

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in \mathbb{R}^{P \times Q}$ be matrices

			arrieracor
Types of Derivatives	scalar	vector	matrix
scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$rac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Denominator

Types of Derivatives	scalar	
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$	

Types of Derivatives	scalar	vector
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y,x\in\mathbb{R}$ be scalars, $\mathbf{y}\in\mathbb{R}^M$ and $\mathbf{x}\in\mathbb{R}^P$ be vectors.

1. In numerator layout:

$$\dfrac{\partial y}{\partial \mathbf{x}}$$
 is a $1\times P$ matrix, i.e. a row vector
$$\dfrac{\partial \mathbf{y}}{\partial \mathbf{x}}$$
 is an $M\times P$ matrix

$$\dfrac{\partial y}{\partial \mathbf{x}}$$
 is a $P imes 1$ matrix, i.e. a column vector $\dfrac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is an $P imes M$ matrix

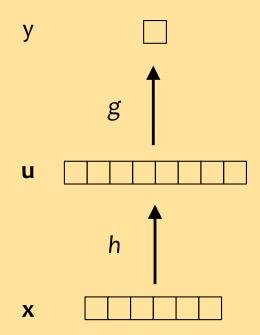
In this course, we use denominator layout.

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

[Common Vector Derivatives]	
$\angle e + \frac{\partial f(\vec{x})}{\partial \vec{x}} = \nabla_{x} f(\vec{x})$	be the vector derivative of f, BERMXM XERM
5 calor Derivative $f(x) \rightarrow \frac{\partial f}{\partial x}$	Vector Dennture F(x) -> OF
7× → P	x ^T B → B
$\begin{array}{ccc} \times \flat & \longrightarrow & \flat \\ & & \\ & \times^2 & \longrightarrow & 2 \times \end{array}$	$x^{T}b \longrightarrow b$ $x^{T}x \longrightarrow 2x$
$3x^2 \rightarrow 2bx$	XTBX => 2BX

Question:

Suppose y = g(u) and u = h(x)



Which of the following is the correct definition of the chain rule?

Recall:
$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix} \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \dots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_N}{\partial x_2} \end{bmatrix}$$

Answer:

$$\frac{\partial y}{\partial \mathbf{x}} = \dots$$

A.
$$\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathbf{B.} \ \frac{\partial \boldsymbol{y}}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathsf{C.} \ \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

D.
$$\frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

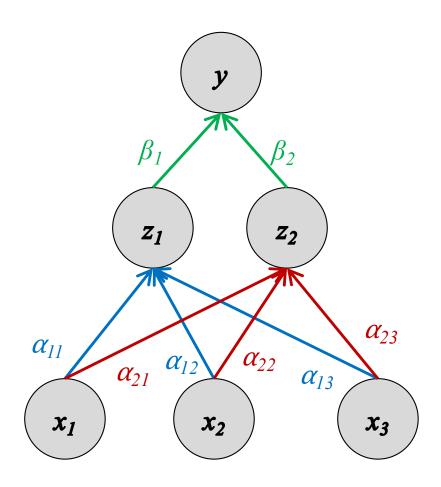
$$\mathsf{E.} \ (\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}})^T$$

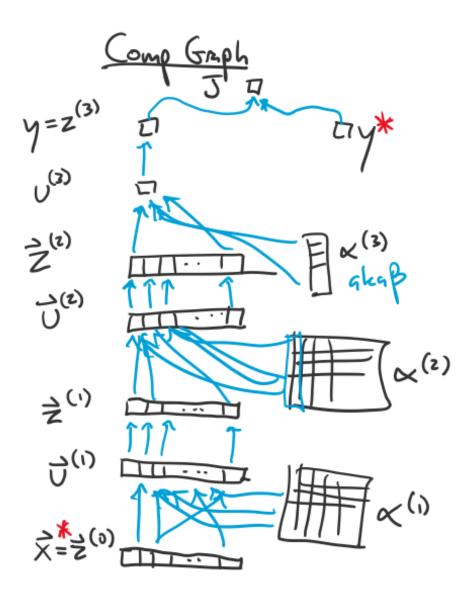
F. None of the above

DRAWING A NEURAL NETWORK

Neural Network Diagram

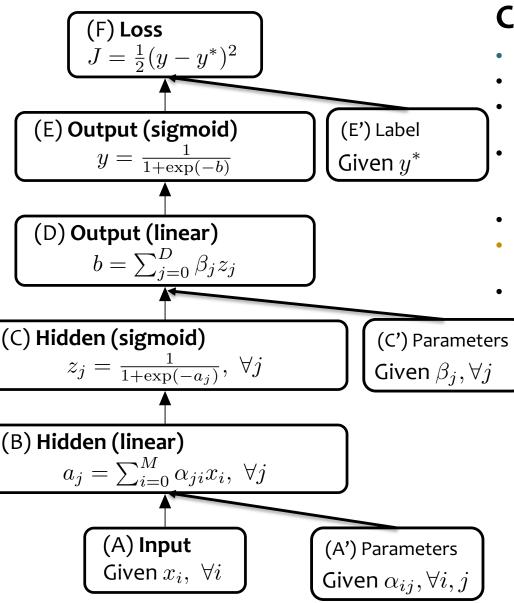
- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
 - Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
 - The diagram does NOT include any nodes related to the loss computation





Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss



Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
 - One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss

Neural Network Diagram

- The diagram represents a neural network
- Nodes are circles
- One node per hidden unit
- Node is labeled with the variable corresponding to the hidden unit
- For a fully connected feed-forward neural network, a hidden unit is a nonlinear function of nodes in the previous layer
- Edges are directed
- Each edge is labeled with its weight (side note: we should be careful about ascribing how a matrix can be used to indicate the labels of the edges and pitfalls there)
- Other details:
 - Following standard convention, the intercept term is NOT shown as a node, but rather is assumed to be part of the nonlinear function that yields a hidden unit. (i.e. its weight does NOT appear in the picture anywhere)
 - The diagram does NOT include any nodes related to the loss computation

Computation Graph

- The diagram represents an algorithm
- Nodes are rectangles
- One node per intermediate variable in the algorithm
- Node is labeled with the function that it computes (inside the box) and also the variable name (outside the box)
- Edges are directed
- Edges do not have labels (since they don't need them)
- For neural networks:
 - Each intercept term should appear as a node (if it's not folded in somewhere)
 - Each parameter should appear as a node
 - Each constant, e.g. a true label or a feature vector should appear in the graph
 - It's perfectly fine to include the loss

Important!

Some of these conventions are specific to 10-301/601. The literature abounds with varations on these conventions, but it's helpful to have some distinction nonetheless.

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

DEEP LEARNING

Why is everyone talking about Deep Learning?

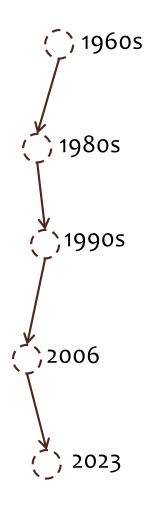
 Because a lot of money is invested in it...

- DeepMind: Acquired by Google for \$400
 million
- Deep Learning startups command millions of VC dollars

Demand for deep learning engineers continually outpaces supply

 Because it made the front page of the New York Times

Why is everyone talking about Deep Learning?



Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!

Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)