MACHINE LEARNING DEPARTMENT

10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Deep Learning: RNNs \& CNNs

Matt Gormley
Lecture 14
Mar. 2, 2023

Reminders

- Exit Poll: Exam 1
- Homework 5: Neural Networks
- Out: Sun, Feb 26
- Due: Fri, Mar 17 at 11:59pm

Peer Tutoring

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are simply fancy computation graphs (aka. hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on the backpropagation algorithm to compute the necessary gradients.

BACKGROUND: HUMAN LANGUAGE TECHNOLOGIES

Human Language Technologies

Speech Recognition

Machine Translation
기계 번역은 특히 영어와 한국어와 같은 언어 쌍의 경우 매우 어렵습니다.

Summarization

Bidirectional RNN

RNNs are a now commonplace backbone in deep learning approaches to natural language processing

probabilistic output
right-to-left hidden states
left-to-right hidden states
word embeddings

BACKGROUND: N-GRAM LANGUAGE MODELS

n-Gram Language Model

- Goal: Generate realistic looking sentences in a human language
- Key Idea: condition on the last $\mathrm{n}-1$ words to sample the $\mathrm{n}^{\text {th }}$ word

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?

n-Gram Model $(\mathbf{n}=\mathbf{2}) \quad p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}\right)$
$p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{6}\right)=$

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?
$\underset{\mathrm{w}_{1}}{\text { The }} \underset{\mathrm{w}_{2}}{\text { bat }} \underset{\mathrm{w}_{3}}{\text { made }} \underset{\mathrm{w}_{4}}{\text { noise }} \underset{\mathrm{w}_{5}}{\substack{\text { at }}} \underset{\mathrm{w}_{6}}{\text { night }}$
n-Gram Model ($\mathbf{n}=\mathbf{3}) \quad p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}, w_{t-2}\right)$

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{6}\right)=
$$

The				$p\left(w_{1}\right)$	
The	bat			$\mathrm{p}\left(\mathrm{w}_{2}\right.$	W_{1})
The	bat	made		$\mathrm{p}\left(\mathrm{w}_{3}\right.$	$\mathrm{w}_{2}, \mathrm{w}_{1}$)
	bat	made		$\mathrm{p}\left(\mathrm{w}_{4}\right.$	$\mathrm{w}_{3}, \mathrm{w}_{2}$)
		made	at	$\mathrm{p}\left(\mathrm{w}_{5}\right.$	$\mathrm{w}_{4}, \mathrm{w}_{3}$)
			at	$p\left(w_{6}\right.$	$\mathrm{w}_{5}, \mathrm{w}_{4}$)

n-Gram Language Model

Question: How can we define a probability distribution over a sequence of length T ?

$\mathbf{n - G r a m} \operatorname{Model}(\mathbf{n}=\mathbf{3}) \quad p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}, w_{t-2}\right)$

$$
\mathrm{p}\left(\mathrm{w}_{1}, w^{w}, \ldots, \mathrm{w}_{6}\right)=
$$

The

The
Note: This is called a model because we made some assumptions about how many previous words to condition on (i.e. only n-1 words)

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram Model?

$\mathrm{p}\left(\mathrm{w}_{\mathrm{t}}\right)$	$\begin{aligned} & \mathrm{w}_{\mathrm{t}-2}=\text { The }, \\ & \left.\mathrm{w}_{\mathrm{t}-1}=\text { bat }\right) \end{aligned}$
w_{t}	$\mathrm{p}(\cdot \mid \cdot, \cdot)$
ate	0.015
...	
flies	0.046
...	
zebra	0.000

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram Model?
Answer: From data! Just count n-gram frequencies

$\mathrm{p}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-2}=\right.$ cows,	$\mathrm{w}_{\mathrm{t}-1}=$ eat $)$
w_{t}	$\mathrm{p}(\cdot \mid \cdot \cdot)$
corn	$4 / 11$
grass	$3 / 11$
hay	$2 / 11$
if	$1 / 11$
which	$1 / 11$

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to $p\left(w_{t} \mid w_{t-2}, w_{t-1}\right)$
3. Roll that die and generate whichever word w_{t} lands face up
4. Repeat

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to $p\left(w_{t} \mid w_{t-2}, w_{t-1}\right)$
3. Roll that die and generate whichever word w_{t} lands face up
4. Repeat

Training Data (Shakespeaere)

I tell you, friends, most charitable care ave the patricians of you. For your wants, Your suffering in this dearth, you may as well Strike at the heaven with your staves as lift them Against the Roman state, whose course will on The way it takes, cracking ten thousand curbs Of more strong link asunder than can ever Appear in your impediment. For the dearth, The gods, not the patricians, make it, and Your knees to them, not arms, must help.

5-Gram Model

Approacheth, denay. dungy Thither! Julius think: grant,--0 Yead linens, sheep's Ancient, Agreed: Petrarch plaguy Resolved pear! observingly honourest adulteries wherever scabbard guess; affirmation--his monsieur; died. jealousy, chequins me. Daphne building. weakness: sunrise, cannot stays carry't, unpurposed. prophet-like drink; back-return 'gainst surmise Bridget ships? wane; interim? She's striving wet;

RECURRENT NEURAL NETWORK (RNN) LANGUAGE MODELS

Recurrent Neural Networks (RNNs)

inputs: $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{T}\right), x_{i} \in \mathcal{R}^{I}$ hidden units: $\mathbf{h}=\left(h_{1}, h_{2}, \ldots, h_{T}\right), h_{i} \in \mathcal{R}^{J}$

$$
\text { outputs: } \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{T}\right), y_{i} \in \mathcal{R}^{K}
$$ nonlinearity: \mathcal{H}

Definition of the RNN: $\in \mathbb{R}$

The Chain Rule of Probability

Question: How can we define a probability distribution over a sequence of length T ?

Chain rule of probability: $p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)$
$\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}^{2} \mathrm{w}_{3}, \ldots, \mathrm{w}_{6}\right)=$

Note: This is called the chain rule because it is always true for every probability distribution

RNN Language Model

$$
\text { RNN Language Model: } p\left(w_{1}, w_{2}, \ldots, w_{T}\right)=\prod_{t=1}^{T} p\left(w_{t} \mid f_{\boldsymbol{\theta}}\left(w_{t-1}, \ldots, w_{1}\right)\right)
$$

$$
\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{6}\right)=
$$

$$
\begin{aligned}
& \mathrm{p}\left(\mathrm{w}_{1}\right) \\
& \mathrm{p}\left(\mathrm{w}_{2} \mid \mathrm{f}_{\theta}\left(\mathrm{w}_{1}\right)\right) \\
& \mathrm{p}\left(\mathrm{w}_{3} \mid \mathrm{f}_{\theta}\left(\mathrm{w}_{2}, \mathrm{w}_{1}\right)\right) \\
& \mathrm{p}\left(\mathrm{w}_{4} \mid \mathrm{f}_{\theta}\left(\mathrm{w}_{3}, \mathrm{w}_{2}, \mathrm{w}_{1}\right)\right) \\
& \mathrm{p}\left(\mathrm{w}_{5} \mid \mathrm{f}_{\theta}\left(\mathrm{w}_{4}, \mathrm{w}_{3}, \mathrm{w}_{2}, \mathrm{w}_{1}\right)\right) \\
& \mathrm{p}\left(\mathrm{w}_{6} \mid \mathrm{f}_{\theta}\left(\mathrm{w}_{5}, \mathrm{w}_{4}, \mathrm{w}_{3}, \mathrm{w}_{2}, \mathrm{w}_{1}\right)\right)
\end{aligned}
$$

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector ${\underline{h_{t}}}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Q1: Hor con we create a distributor $p\left(\omega_{t} \mid h_{t}\right)$ for en h_{t} ?

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

RNN Language Model

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat ach probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to $p\left(w_{t} \mid w_{t-2}, w_{t-1}\right)$
3. Roll that die and generate whichever word w_{t} lands face up
4. Repeat

START

The same approach to sampling we used for an $\mathbf{n -}$ Gram Language Model also works here for an RNN Language Model

Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hourc butcut thv council I am great, Murdered a master's ready there My powe so much as hell: Some service bondman here, Would show

KING LEAR: O, if you w - +eeble sight, the courtesy of your law, Your'sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.
??
CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without comebroken limb shall acquit him Which is the real is but young and tender; and, Shakespeare?! uld be loath to foil him to acquaint you wi that either you might stay him from his in disgrace well as he sh thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

Shakespeare's As You Like It

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

RNN-LM Sample

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Shakespeare's As You Like It

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hourc butcut thv council I am great, Murdered a master's ready there My powe so much as hell: Some service bondman here, Would show

KING LEAR: O, if you w - +eeble sight, the courtesy of your law, Your'sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.
??
CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without comebroken limb shall acquit him Which is the real is but young and tender; and, Shakespeare?! uld be loath to foil him hy love to you, I came hither to acquaint you wi that either you might stay him from his in ent or brook such disgrace well as he sh \geq into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

SEQUENCE TO SEQUENCE MODELS

Sequence to Sequence Model

Speech Recognition

Machine Translation
기계 번역은 특히 영어와 한국어와 같은 언어 쌍의 경우 매우 어렵습니다.

Summarization

Sequence to Sequence Model

Now suppose you want generate a sequence conditioned on another input Key Idea:

1. Use an encoder model to generate a vector representation of the input
2. Feed the output of the encoder to a decoder which will generate the output

Applications:

- translation:

$$
\text { Spanish } \rightarrow \text { English }
$$

- summarization:
article \rightarrow summary
- speech recognition:
speech signal \rightarrow transcription
Decoder RNN-LM to

$\uparrow p\left(w_{3} \mid h_{3}\right)$

START
Let's
Let's
q

BACKGROUND: COMPUTER VISION

Example: Image Classification

- ImageNet LSVRC-2011 contest:
- Dataset: 1.2 million labeled images, 1000 classes
- Task: Given a new image, label it with the correct class
- Multiclass classification problem
- Examples from http://image-net.org/

IḾGENET

Not logged in. Login I Signup

Bird

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings
marine animal, marine creature, sea animal, sea creature (1) scavenger (1)
biped (0)
predator, predatory animal (1)
larva (49)
acrodont (0)

- feeder (0)
stunt (0)
chordate (3087)
tunicate, urochordate, urochord (6)
cephalochordate (1)
ㄱ.. vertebrate, craniate (3077)
mammal, mammalian (1169)
bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
cock (1)
hen (0)
nester (0)
night bird (1)
bird of passage (0)
protoavis (0)
archaeopteryx, archeopteryx, Archaeopteryx lithographi Sinornis (0)
Ibero-mesornis (0)
archaeornis (0)
ratite, ratite bird, flightless bird (10)
carinate, carinate bird, flying bird (0)
passerine, passeriform bird (279)
nonpasserine bird (0)
bird of prey, raptor, raptorial bird (80) gallinaceous bird, gallinacean (114)

German iris, Iris kochii

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica
$469 \quad 49.6 \%$ pictures Popularity Percentile

IḾGENET

Court, courtyard

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court"

165 pictures
92.61\% Popularity Percentile

Wordnet

 IDs(1) Numbers in brackets: (the number of synsets in the subtree).
+. ImageNet 2011 Fall Release (32326)
1 plant, flora, plant life (4486)

- geological formation, formation (175)
... natural object (1112)
sport, athletics (176)
- artifact, artefact (10504)
instrumentality, instrumentation (5494)
. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
arch (31)
area (344)
- aisle (0)
auditorium (1)
baggage claim (0)
- box (1)
breakfast area, breakfast nook (0)
bullpen (0)
chancel, sanctuary, bema (0)
choir (0)
- corner, nook (2)
. court, courtyard (6)
atrium (0)
bailey (0)
cloister (0)
food court (0)
forecourt (0)
narvic (n)

Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
gure 3: Model images of planar objects are shown in the
prow. Recognition results below show model outlines and
\qquad
Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

CNN for Image Classification

(Krizhevsky, Sutskever \& Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax

pooling

CNNs for Image Recognition

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are simply fancy computation graphs (aka. hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on the backpropagation algorithm to compute the necessary gradients.

CONVOLUTION

What's a convolution?

- Basic idea:
- Pick a 3×3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

Ex: 1 input chanel, 1 output channel

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolved Image
Convolution

0	0	0
0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolved Image
Convolution

0	0	0
0	1	1
0	1	0

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

| | Convolved Image | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Convolution | 3 2 2 3
 2 0 2 1
 2 2 1 0
 3 1 0 0
 1 0 0 00 | | | |

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

| | Convolved Image | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Convolution | 3 2 2 3
 2 0 2 1
 2 2 1 0
 3 1 0 0
 1 0 0 00 | | | |

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

				0	0	0

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0						
0		1	1	1	1	0
0		0		1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolved Image

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0				0	0
0	1		1	1	1	0
0	1		0		0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolved Image
Convolution

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0				0
0	1	1		1	1	0
0	1	0		1		0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0		
0	1	1	1		1
	0				
0	1	0	0		0

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
	1	0	0	1	0	0
	1		1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

	Convolved Image				
Convolution	3 2 2 3 1 2 				

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0				1	1	0
0		0	0	1	0	0
0		0		0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

	Convolved Image				
Convolution	3 2 2 3 1 2 0 				

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

| | Convolved Image | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Convolution | 3 2 2 3
 2 0 2 1
 2 2 1 0
 3 1 0 0
 1 0 0 00 | | | |

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

0	0	0	Input Image					
0	0	0	0	0	0	0	0	
0	0	1	1	1	1	1	0	
	0	1	0	0	1	0	0	
	0	1	0	1	0	0	0	
	0	1	1	0	0	0	0	
	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	

Identity
Convolution

0	0	0
0	1	0
0	0	0

Convolved lmage				
1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0				

Background: Image Processing

A convolution matrix is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Blurring
Convolution

.1	.1	.1
.1	.2	.1
.1	.1	.1

Convolved Image

.4	.5	.5	.5	.4
.4	.2	.3	.6	.3
.5	.4	.4	.2	.1
.5	.6	.2	.1	0
.4	.3	.1	0	0

What's a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice $\quad \stackrel{\text { Load }}{ }$
Filter

Edge \uparrow		
$0 \leqslant$	$-1 \leqslant$	$-2 \boldsymbol{*}$
$0 \leqslant$	4 -	$-1 \leqslant$
$0 \leqslant$	$0 \stackrel{\rightharpoonup}{*}$	$0 \leqslant$

\cup Apply filter

What's a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

What's a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice	Load
Use filtered image	

Filter

Edge \uparrow		
0 *	$-1 \leqslant$	-2 -
0 -	4 -	-1 *
0 ง	$0 \stackrel{\rightharpoonup}{*}$	0 ง

\cup Apply filter

What's a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

What's a convolution?

- Basic idea:
- Pick a 3×3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation
- Key point:
- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

Ex: 1 input chancel, 1 output channel

DOWNSAMPLING

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3		

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3	1	

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3	1	0

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3	1	0
1		

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3	1	0
1	0	

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

1	1
1	1

3	3	1
3	1	0
1	0	0

Downsampling by Averaging

- Downsampling by averaging is a special case of convolution where the weights are fixed to a uniform distribution
- The example below uses a stride of 2

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolved Image
Convolution

$1 / 4$	$1 / 4$
$1 / 4$	$1 / 4$

$3 / 4$	$3 / 4$	$1 / 4$
$3 / 4$	$1 / 4$	0
$1 / 4$	0	0

Max-Pooling

- Max-pooling with a stride > 1 is another form of downsampling
- Instead of averaging, we take the max value within the same range as the equivalently-sized convolution
- The example below uses a stride of 2

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

$$
y_{i j}=\max \left(x_{i j}\right.
$$

$$
\begin{aligned}
& x_{i, j+1} \\
& x_{i+1, j} \\
& \left.x_{i+1, j+1}\right)
\end{aligned}
$$

CONVOLUTIONAL NEURAL NETS

Background

A Recipe for

Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

4. Train with SGD:

(take small steps
opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Background

A Recipe for

Machine Learning

- Convolutional Neural Networks (CNNs) provide another form of decision function
- Let's see what they look like...
- Decision function

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta^{(t+1)}=\theta^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Convolutional Layer

CNN key idea:

Treat convolution matrix as parameters and learn them!

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Learned
Convolution
θ_{11}
θ_{12}

Convolved Image

.4	.5	.5	.5	.4
.4	.2	.3	.6	.3
.5	.4	.4	.2	.1
.5	.6	.2	.1	0
.4	.3	.1	0	0

Convolutional Neural Network (CNN)

- Typical layers include:
- Convolutional layer
- Max-pooling layer
- Fully-connected (Linear) layer
- ReLU layer (or some other nonlinear activation function)
- Softmax
- These can be arranged into arbitrarily deep topologies

Architecture \#1: LeNet-5

PROC. OF THE IEEE, NOVEMBE 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

TRAINING CNNS

Background

A Recipe for

Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

4. Train with SGD:

(take small steps
opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Background

A Recipe for

Machine Learning

1. Given training data:
2. Define goal:

- Q: Now that we have the CNN as a decision function, how do we compute the gradient?
- Decision functior • A: Backpropagation of course!

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

opP-site the gradient)

$$
-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

SGD for CNNs
SGD for CNNs
Ex: Arclitecture: Giver \vec{x}, \dot{y}^{*}

$$
\left\{\begin{array}{l}
J=\ell\left(y, y^{*}\right) \\
y=\operatorname{softmx}\left(z^{(5)}\right) \\
z^{(5)}=\operatorname{liner}\left(z^{(4)}, w\right) \\
z^{(4)}=\operatorname{refo}\left(z^{(3)}\right) \\
-z^{(3)}=\operatorname{conv}\left(z^{(2)}, \beta\right) \\
z^{(2)}=\max -\operatorname{poo} \mid\left(z^{(1)}\right) \\
z^{(1)}=\operatorname{comv}(\vec{x}, \alpha) \\
\hline T
\end{array}\right.
$$

(1) Init $\vec{\theta}$
(2) Whik not convoged:

Smple $i \in\{1, \ldots, N\}$
Forwand: $y=h_{\theta}\left(\vec{x}^{(i)}\right), J_{i}(\theta)=\ell\left(y, y^{*}\right)$
Backnord: $\nabla_{\theta} J_{i}(\theta)=\cdots$
$U_{\text {phate }}: \vec{\theta} \leftarrow \vec{\theta}-\lambda \nabla_{\vec{\theta}} J_{i}(\theta)$

LAYERS OF A CNN

ReLU Layer
RelU Layper I-put: $\vec{x} \in \mathbb{R}^{k}$ output: $\vec{y} \in \mathbb{R}^{k}$
Forward:

Backewase:

$$
\frac{d J}{d x_{i}}=\frac{d J}{d y_{i}} \frac{d y_{i}}{d x_{i}} \text { subderimative }
$$

where $\frac{d y_{i}}{d x_{i}}= \begin{cases}1 & \text { if } x_{i}>0 \\ 0 & \text { othewise }\end{cases}$

Softmax Layer
Softmax Layer
Input: $\vec{x} \in \mathbb{R}^{k}$ Output: $\vec{y} \in \mathbb{R}^{k}$

Forwerd:

$$
y_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{k=1}^{k} \exp \left(x_{k}\right)}
$$

Backwand:

$$
\frac{d J}{d x_{j}}=\sum_{i=1}^{K} \frac{d J}{d y_{i}} \frac{d y_{i}}{d x_{j}}
$$

where $\left(\frac{d y_{i}}{d x_{j}}\right)= \begin{cases}y_{i}\left(1-y_{i}\right) & \text { if } i=j \\ -y_{i} y_{j} & \text { otherwize }\end{cases}$

Fully-Connected Layer

Fully Connected Cayes (w/tensor input)

- Suppose input is a 3D Tensor: $X=$
- Stretch out into a lay vector.

- then standard liven layer:

$$
\begin{aligned}
& y=\alpha^{\top} \hat{x}+\alpha_{0} \text { where } \\
& \alpha \in \mathbb{R}^{A \times B} \\
&|\hat{x}|=A \quad|y|=B
\end{aligned}
$$

Convolutional Layer
Ex: 1 input channel, 1 output channel

Ex: 1 input channel, 2 output channels

$$
\begin{aligned}
& \text { Conv\#2 Output\#2 } \\
& \xrightarrow{\frac{\alpha_{11}^{(2)}}{\substack{(2) \\
(2) \\
\alpha_{12}^{(2)} \\
\hline(2) \\
\alpha_{22} \\
\hline(2)}} \longrightarrow} \\
& y_{11}^{(2)}=\alpha_{11}^{(2)} x_{11}+\alpha_{12}^{(2)} x_{12}+\alpha_{21}^{(2)} x_{21}+\alpha_{22}^{(2)} x_{22}+\alpha_{0}^{(2)} \\
& y_{12}^{(2)}=\ldots \\
& y_{21}^{(2)}=\cdots \\
& y_{22}^{(2)}=\alpha_{11}^{(2)} x_{22}+\alpha_{12}^{(2)} x_{23}+\alpha_{21}^{(2)} x_{32}+\alpha_{22}^{(2)} x_{33}+\alpha_{0}^{(2)}
\end{aligned}
$$

Convolutional Layer

Ex: $C^{I^{\prime}=3}$ input channels, C^{0} output clanenels Coup pt

Patches in 3D

Forward ${ }^{\text {K }}$

Baboons

$$
\begin{aligned}
H^{0}= & \left\lfloor\left(H^{I}+2 p-K\right) / s+1\right\rfloor \\
W^{0}= & \left\lfloor\left(W^{I}+2 p-K\right) / s+1\right\rfloor \\
\text { where } & p=\# \text { pixels af podding on input } \\
& K=\text { size of coir. wane } \\
& S=\text { stride length }
\end{aligned}
$$

$$
y_{i j}^{(k)}=\alpha_{0}^{(k)}+\sum_{c=1}^{C^{I}} \sum_{q=1}^{K} \sum_{r=1}^{K} \alpha_{q}^{(k)} x_{m n}^{()} \text {where } \begin{aligned}
& m=s(i-1)+q \\
& n=s(j-1)+r
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d J}{d \alpha_{0}^{(k)}}=\sum_{i} \sum_{j} \frac{d J}{d y_{i j}^{(k)}} \frac{y_{i j}(k)}{d \alpha_{0}^{(k)}} \\
& \frac{d J}{d \alpha_{q r}^{(k)}}=\sum_{i} \sum_{j} \frac{d J}{d y_{i j}^{(k)}} \frac{d y_{i j}^{(k)}}{d \alpha_{i}^{(k)}} \quad \text { just sone } \\
& \frac{d J}{d x_{m n}^{(k)}}=\sum_{i} \sum_{j} \sum_{k} \frac{d J}{d y_{i j}^{(k)}\left(\frac{d y_{i j}^{(k)}}{d x_{m n}^{(k)}}\right.}
\end{aligned}
$$

Max-Pooling Layer

Ex: 1 input channel, 1 output channel, stride of 1

Max-Pooling Layer

(k)

$$
\begin{align*}
& \text { Forward: } \\
& y_{i j}^{(k)}=\max \tag{}\\
& \max _{q \in\{1, \ldots k\}} X_{\text {mn }}^{(k)} \text { where } \begin{aligned}
m & =s(i-1)+q \\
n & =s(j-1)+r
\end{aligned} \\
& y_{i j}^{(k)}=\max _{q \in\{1, \ldots k\}} x_{m n} x_{m \in\{1, \ldots k\}}^{(k)} \text { where } \\
& \begin{array}{l}
m=s(i-1)+q \\
n=s(j-1)+r
\end{array} \\
& \text { Backward: } \\
& \text { Subderiratives + Max is not differentiable, but } \\
& \text { subdifferentable. } \\
& \text { + There are a set of derivatives and } \\
& \text { we can just choose one for SGD. } \\
& y=\max (a, b) \\
& \Rightarrow \frac{d J}{d a}=\frac{d J}{d y} \frac{d y}{d a} \text { where } \frac{d y}{d a}= \begin{cases}1 & \text { if } a>b \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

Convolutional Neural Network (CNN)

- Typical layers include:
- Convolutional layer
- Max-pooling layer
- Fully-connected (Linear) layer
- ReLU layer (or some other nonlinear activation function)
- Softmax
- These can be arranged into arbitrarily deep topologies

Architecture \#1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Architecture \#2: AlexNet

CNN for Image Classification

(Krizhevsky, Sutskever \& Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

CNNs for Image Recognition

CNN VISUALIZATIONS

3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/

Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional

Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Example predictions on Test set

CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

Other Resources:

- Readings on course website
- Andrej Karpathy, CS231n Notes
http:|/cs231n.github.io/convolutional-networks/

Deep Learning Objectives

You should be able to...

- Implement the common layers found in Convolutional Neural Networks (CNNs) such as linear layers, convolution layers, max-pooling layers, and rectified linear units (ReLU)
- Explain how the shared parameters of a convolutional layer could learn to detect spatial patterns in an image
- Describe the backpropagation algorithm for a CNN
- Identify the parameter sharing used in a basic recurrent neural network, e.g. an Elman network
- Apply a recurrent neural network to model sequence data
- Differentiate between an RNN and an RNN-LM

ML Big Picture

Learning Paradigms:

What ciata is avaliable and when? What form of prediction?

- supervised learning

4

- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles र्भुuide learning?
\square probabilistic
[information theoretic
[evolutionary search

- ML as optimization

Problem Formulation:
What is the structure of our output prediction? boolean
categorical ordinal real ordering multiple discrete

Ranking
Structured Prediction multiple continuous (e.g. dynamical systems) both discrete \& cont. (e.g. mixed graphical models)

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

1. Data prep
2. Model selection
3. Training (optimization / search)
4. Hyperparameter tuning on validation data
5. (Blind) Assessment on test data

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

