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Reminders

• Lecture 18: this Friday; Recitation on
Wednesday

• Homework 6: Learning Theory / Generative 
Models
– Out: Fri, Mar. 17
– Due: Fri, Mar. 24 at 11:59pm
– IMPORTANT: only 2 grace/late days permitted

• Exam 2 (Thu, Mar 30)
• Exam 3 (Tue, May 2)
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MAP ESTIMATION
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MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of maximum likelihood estimation (MLE):
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽*
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 *
%&'

(

𝑝 𝐱 % 𝜽



MLE vs. MAP

5

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 
of the parameters given the data.

Principle of maximum likelihood estimation (MLE):
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate

𝜽!"# = argmax𝜽 𝑝 𝒟 𝜽 = argmax𝜽*
%&'

(

𝑝 𝐱 % 𝜽

𝜽!"# = argmax𝜽 𝑝 𝜽 𝒟 = argmax𝜽 𝑓 𝜽 *
%&'

(

𝑝 𝐱 % 𝜽

Prior

Important!
Usually the parameters are 
continuous, so the prior is a 
probability density function



The MAP Estimation Objective
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θMAP = argmax
θ

p(θ | D)

= argmax
θ

p(D | θ)p(θ)

p(D)

= argmax
θ

p(D | θ)p(θ)

= argmax
θ

log p(D | θ) + log p(θ)
︸ ︷︷ ︸

!MAP (θ)

p(D | θ)MLE:

p(θ | D) =
p(D | θ)p(θ)

p(D)
MAP:

likelihood
priorposterior

not a function of 𝜃

Bayes Rule

∫
θ′

p(D | θ′)p(θ′)dθ′



Recipe for Closed-form MLE
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1. Assume data was generated iid from some model, i.e., write 
the generative story

x(i) ~ p(x|θ)
2. Write the log-likelihood

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE



1. Assume data was generated iid from some model, i.e., write 
the generative story

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write the log posterior

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕lMAP(θ)/𝜕θ1 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to equal zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMAP

8

Recipe for Closed-form MAP



The Prior Distribution
• The prior distribution encodes domain knowledge about the 

problem.
• Question: Why do we use the Beta distribution as the prior 

for the Bernoulli?
• Reason #1: It has the right support, i.e. [0,1].
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Example: Beta prior “fair coin” Example: Beta prior “unfair coin”

0 1

0
10

0 1

0
10

f(φ | α = 101,β = 101) f(φ | α = 101,β = 1)



The Prior Distribution
• The prior distribution encodes domain knowledge about the 

problem.
• Question: Why do we use the Beta distribution as the prior 

for the Bernoulli?
• Reason #2: The Beta is a conjugate prior for the Bernoulli.
• Definition: A distribution is the conjugate prior of a 

likelihood if the form of the posterior is the same as the form 
of the prior.
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Posterior
p(θ | D)

Likelihood
p(D | θ)

Prior
p(θ)

Conjugate?

Beta Bernoulli Beta yes

Dirichlet Multinomial Multinomial yes

Gaussian Guassian Guassian yes

Gamma Exponential Gamma yes

?? Multinomial Logistic Normal no



MLE of Bernoulli Model
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1. Model: x(i) ∼ Bernoulli(φ) for i = 1, . . . , N

2. Log-posterior:

"MLE(φ) = log p(D | φ)

= log
(

φN1(1− φ)N0

)

= N1 log(φ) +N0 log(1− φ)

3. Derivative:
∂"MLE(φ)

∂φ
=

N1

φ
−

N0

1− φ

4. Set to zero and solve: φMLE =
N1

N1 +N0
=

N1

N

N1 = #(x(i) = 1)

N0 = #(x(i) = 0)



MAP of Beta-Bernoulli Model
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1. Model: φ ∼ Beta(α,β)

x(i) ∼ Bernoulli(φ) for i = 1, . . . , N

2. Log-posterior:

$MAP(φ) = log [p(D | φ)f(φ | α,β)]

= log
[

(

φN1(1− φ)N0

)

(

1

B(α,β)
φ(α−1)(1− φ)(β−1)

)]

= log
[

φ(N1+α−1)(1− φ)(N0+β−1) 1

B(α,β)

]

= (N1 + α− 1) log(φ) + (N0 + β − 1) log(1− φ)− logB(α,β)

= N ′

1 log(φ) +N ′

0 log(1− φ)− logB(α,β)

3. Derivative:
∂$MAP(φ)

∂φ
=

N ′

1

φ
−

N ′

0

1− φ

4. Set to zeroand solve: φMAP =
N ′

1

N ′

1 +N ′

0

=
N1 + α− 1

N1 + α− 1 +N0 + β − 1

N1 = #(x(i) = 1)

N0 = #(x(i) = 0)

N ′

1 = N1 + α− 1

N ′

0 = N0 + β − 1



MAP of Beta-Bernoulli Model
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1. Model: φ ∼ Beta(α,β)

x(i) ∼ Bernoulli(φ) for i = 1, . . . , N

2. Log-posterior:

$MAP(φ) = log [p(D | φ)f(φ | α,β)]

= log
[
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1
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= log
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φ(N1+α−1)(1− φ)(N0+β−1) 1
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]

= (N1 + α− 1) log(φ) + (N0 + β − 1) log(1− φ)− logB(α,β)

= N ′

1 log(φ) +N ′

0 log(1− φ)− logB(α,β)

3. Derivative:
∂$MAP(φ)

∂φ
=

N ′

1

φ
−

N ′

0

1− φ

4. Set to zeroand solve: φMAP =
N ′

1

N ′

1 +N ′

0

=
N1 + α− 1

N1 + α− 1 +N0 + β − 1

N1 = #(x(i) = 1)

N0 = #(x(i) = 0)

N ′

1 = N1 + α− 1

N ′

0 = N0 + β − 1



MAP of Beta-Bernoulli Model
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Example 1 (MLE) SupposeD = {8H, 2T}

φMLE =
8

10
= 0.8

Example 2 (MAP) Same dataset, but φ ∼ Beta(α = 101,β = 101)

φMAP =
8 + 101− 1

8 + 101− 1 + 2 + 101− 1
=

108

108 + 102
≈ 0.5

Example 3 (MAP) Same dataset, but φ ∼ Beta(α = 101,β = 1)

φMAP =
108

108 + 2
≈ 1.0

Example 4 (MLE) SupposeD = {108H, 102T}

φMLE =
108

108 + 102
≈ 0.5

“fair 
coin”
prior

“unfair 
coin”
prior



Takeaways
• One view of what ML is trying to accomplish is 

function approximation
• The principle of maximum likelihood 

estimation provides an alternate view of 
learning

• Synthetic data can help debug ML algorithms
• Probability distributions can be used to model

real data that occurs in the world
(don’t worry we’ll make our distributions more 
interesting soon!)
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Learning Objectives
MLE / MAP

You should be able to…
1. Recall probability basics, including but not limited to: discrete 

and continuous random variables, probability mass functions, 
probability density functions, events vs. random variables, 
expectation and variance, joint probability distributions, 
marginal probabilities, conditional probabilities, independence, 
conditional independence

2. Describe common probability distributions such as the Beta, 
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

3. State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

4. State the principle of maximum a posteriori estimation and 
explain why we use it

5. Derive the MLE or MAP parameters of a simple model in closed 
form

16



NAÏVE BAYES

17



Naïve Bayes

• Why are we talking about Naïve Bayes?
– It’s just another decision function that fits into 

our “big picture” recipe from last time
– But it’s our first example of a Bayesian Network 

and provides a clearer picture of probabilistic 
learning

– Just like the other Bayes Nets we’ll see, it admits 
a closed form solution for MLE and MAP

– So learning is extremely efficient (just counting)

19



Fake News Detector

23

The Economist The Onion

Today’s Goal: To define a generative model of emails 
of two different classes (e.g. real vs. fake news)



𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

10/31/22 25

Bag-of-
Words 
Model



10/31/22 26

The Cat in the Hat
(by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The_Cat_in_the_Hat#/media/File:The_Cat_in_the_Hat.png

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

Bag-of-
Words 
Model

https://en.wikipedia.org/wiki/The_Cat_in_the_Hat
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Go, Dog. Go! 
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Go,_Dog._Go!#/media/File:Go_Dog_Go.jpg

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

Bag-of-
Words 
Model

https://en.wikipedia.org/wiki/Go,_Dog._Go!
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Source: 
https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish#/media/File:One_Fish_Two_Fish_Red_Fish_Blue_Fish_(cover_art).jpg

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

One Fish, Two Fish, 
Red Fish, Blue Fish

(by Dr. Seuss)

Bag-of-
Words 
Model

https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish
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𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

0 0 0 0 1 0 0

Are You My Mother?
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Are_You_My_Mother%3F#/media/File:Areyoumymother.gif

Bag-of-
Words 
Model

https://en.wikipedia.org/wiki/Are_You_My_Mother%3F


Naive Bayes: Model

Whiteboard
– Generating synthetic "labeled documents"
– Definition of model
– Naive Bayes assumption
– Counting # of parameters with / without NB 

assumption

30



Model 1: Bernoulli Naïve Bayes
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If HEADS, flip 
each red coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xm

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



What’s wrong with the 
Naïve Bayes Assumption?

The features might not be independent!!

33

• Example 1:
– If a document contains the word 

“Donald”, it’s extremely likely to 
contain the word “Trump”

– These are not independent!

• Example 2:
– If the petal width is very high, 

the petal length is also likely to 
be very high



Q&A
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Q: Why would we use Naïve Bayes? Isn’t it too 
Naïve?

A: Naïve Bayes has one key advantage over 
methods like Perceptron, Logistic 
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative 
training procedures that might require 
hundreds of epochs, Naïve Bayes computes 
its parameters in closed form by counting.



Naïve Bayes: Learning from Data

Whiteboard
– Data likelihood
– MLE for Naive Bayes
– Example: MLE for Naïve Bayes with Two 

Features
– MAP for Naive Bayes

35



Recipe for Closed-form MLE

36

1. Assume data was generated iid from some model, i.e., write 
the generative story

x(i) ~ p(x|θ)
2. Write the log-likelihood

l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives, i.e., the gradient

𝜕l(θ)/𝜕θ1 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE



BERNOULLI NAÏVE BAYES
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Model 1: Bernoulli Naïve Bayes

38

Data: Binary feature vectors, Binary labels

Generative Story: Model:



Model 1: Bernoulli Naïve Bayes

39

Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 1: 
What is the MLE of ɸ? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Data:

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 0 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Maximum Likelihood Estimation

Question 2: 
What is the MLE of θ0,1? 
(A) 0/6 (B) 1/6 (C) 2/6 (D) 3/6 
(E) 4/6 (F) 5/6 (G) 6/6 (H) None of 

the above

Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:



Model 1: Bernoulli Naïve Bayes
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Maximum Likelihood Estimation
Training: Find the class-conditional MLE 
parameters

Count 
Variables:

Maximum 
Likelihood 

Estimators:

MLE for Naïve 
Bayes is a splendid 
learning algorithm 
for when you have 

say billions of 
training examples 
and hundreds of 

millions of features!

You only need one 
pass through the 
data to perform 
some counting.



MAP ESTIMATION FOR 
BERNOULLI NAÏVE BAYES
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MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed

45



A Shortcoming of MLE
For Naïve Bayes, suppose we never observe the word 
“unicorn” in a real news article.
In this case, what is the MLE of the following quantity?
p(xunicorn | y=real) = 

Recall:

46

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

Now suppose we observe the word “unicorn” at test 
time. What is the posterior probability that the article 
was a real article?



Recipe for Closed-form MAP 
Estimation

1. Assume data was generated i.i.d. from some model
(i.e. write the generative story)

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write log-likelihood

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives (i.e. gradient)

𝜕lMAP(θ)/𝜕θ1 = …
𝜕lMAP(θ)/𝜕θ2 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMAP

48



Model 1: Bernoulli Naïve Bayes
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1. Generative Story:
The parameters are drawn 
once for the entire dataset.

3. MAP Estimators:

Take derivatives, set to zero and solve…

MAP Estimation (Beta Prior)
2. Likelihood:

φ ∼ Beta(α′,β′)

form ∈ {1, . . . ,M}:
for y ∈ {0, 1}:

θm,y ∼ Beta(α,β)
for i ∈ {1, . . . , N}:

y(i) ∼ Bernoulli(φ)
form ∈ {1, . . . ,M}:

x(i)
m ∼ Bernoulli(θy(i),m)

!MAP (φ,θ)

= log [p(φ,θ|α′,β′,α,β)p(D|φ,θ)]

= log

[(

p(φ|α′,β′)
M
∏

m=1

p(θ0,m|α,β)

)(

N
∏

i=1

p(x(i), y(i)|φ,θ)

)]

φ =
(α′ − 1) +Ny=1

(α′ − 1) + (β′ − 1) +N

θ0,m =
(α− 1) +Ny=0,xm=1

(α− 1) + (β − 1) +Ny=0

θ1,m =
(α− 1) +Ny=1,xm=1

(α− 1) + (β − 1) +Ny=1

∀m ∈ {1, . . . ,M}



Model 1: Bernoulli Naïve Bayes
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1. Generative Story:
The parameters are drawn 
once for the entire dataset.

3. MAP Estimators:

Take derivatives, set to zero and solve…

MAP Estimation (Beta Prior)
2. Likelihood:

φ ∼ Beta(α′,β′)

form ∈ {1, . . . ,M}:
for y ∈ {0, 1}:

θm,y ∼ Beta(α,β)
for i ∈ {1, . . . , N}:

y(i) ∼ Bernoulli(φ)
form ∈ {1, . . . ,M}:

x(i)
m ∼ Bernoulli(θy(i),m)

!MAP (φ,θ)

= log [p(φ,θ|α′,β′,α,β)p(D|φ,θ)]

= log

[(

p(φ|α′,β′)
M
∏

m=1

p(θ0,m|α,β)

)(

N
∏

i=1

p(x(i), y(i)|φ,θ)

)]

φ =
(α′ − 1) +Ny=1

(α′ − 1) + (β′ − 1) +N

θ0,m =
(α− 1) +Ny=0,xm=1

(α− 1) + (β − 1) +Ny=0

θ1,m =
(α− 1) +Ny=1,xm=1

(α− 1) + (β − 1) +Ny=1

∀m ∈ {1, . . . ,M}

A common choice 
for the class prior:

⍺’ = 1 and β’ = 1

Since Beta(1,1) = 
Uniform(0,1)



THE NAÏVE BAYES FRAMEWORK

55



Many NB Models
There are many Naïve Bayes models!

1. Bernoulli Naïve Bayes:
– for binary features

2. Multinomial Naïve Bayes:
– for integer features

3. Gaussian Naïve Bayes: 
– for continuous features

4. Multi-class Naïve Bayes:
– for classification problems with > 2 classes
– event model could be any of Bernoulli, Gaussian, 

Multinomial, depending on features

56



Model 2: Multinomial Naïve Bayes

57

Option 1: Integer vector (word IDs)

t = [x1, x2, . . . , xM ] where xm � {1, . . . , K} a word id.

Support:

Generative Story:
for i � {1, . . . , N}:

y(i) � Bernoulli(�)

for j � {1, . . . , Mi}:

x(i)
j � Multinomial(�y(i) , 1)

Model:
p�,�(x, y) = p�(y)

K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
Mi�

j=1

�y,xj



Model 3: Gaussian Naïve Bayes

58

Model: Product of prior and the event model

Support: 

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

t � RK

Gaussian Naive Bayes assumes that p(xk|y) is given by
a Normal distribution.



Model 3: Gaussian Naïve Bayes
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Model:

Support: t � RK

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� 5𝜋 = 7!'()

!
� 𝑁 = # of data points
� 𝑁"#$ = # of data points with label 1

� Real-valued features 
� 𝑋%|𝑌 = 𝑦 ∼ Gaussian 𝜇%,' , 𝜎%,'(

� �̂�%,' =
$

!'(*
∑):' + #' 𝑥%

)

� ̂𝜎%,'( = $
!'(*

∑):' + #' 𝑥%
) − �̂�%,'

(

� 𝑁"#' = # of data points with label 𝑦



Model 4: Multiclass Naïve Bayes
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Model:

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

Now, y � Multinomial(�, 1) and we have a sepa-
rate conditional distribution p(xk|y) for each of the C
classes.

The only change is that we permit y to range over C
classes.



Model 4’: Multiclass Gaussian 
Naïve Bayes

61

Model:

Support: t � RK

� Discrete label (𝑌 can take on one of 𝑀 possible values)
� 𝑌 ∼ Categorical 𝜋$, … , 𝜋+
� 5𝜋, = 7!'(,

!
� 𝑁 = # of data points
� 𝑁"#, = # of data points with label 𝑚

� Real-valued features 
� 𝑋%|𝑌 = 𝑦 ∼ Gaussian 𝜇%,' , 𝜎%,'(

� �̂�%,' =
$

!'(*
∑):' + #' 𝑥%

)

� ̂𝜎%,'( = $
!'(*

∑):' + #' 𝑥%
) − �̂�%,'

(

� 𝑁"#' = # of data points with label 𝑦



Model: Product of prior and the event model

Naïve Bayes Model
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Generic

P (s, Y ) = P (Y )
K�

k=1

P (Xk|Y )

Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y)we condition on the data with the corresponding 
class.Classification: Find the class that maximizes the posterior

ŷ = �`;K�t
y

p(y|t)



Naïve Bayes Model
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Generic

Classification:

ŷ = �`;K�t
y

p(y|t) (posterior)

= �`;K�t
y

p(t|y)p(y)

p(x)
(by Bayes’ rule)

= �`;K�t
y

p(t|y)p(y)



VISUALIZING GAUSSIAN NAÏVE 
BAYES
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Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)

66
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Iris Data (2 classes)

Figure from William Cohen



Iris Data (2 classes)

Figure from William Cohen



Iris Data (2 classes)
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Naïve 
Bayes has 
a linear
decision 
boundary 
if variance 
(sigma) is 
constant 
across 
classes



Iris Data (2 classes)

71variance = 1

Naïve 
Bayes has 
a linear
decision 
boundary 
if variance 
(sigma) is 
constant 
across 
classes



Iris Data (2 classes)

72variance learned for each class

Naïve 
Bayes can 
have a 
nonlinear
decision 
boundary 
if variance 
(sigma) 
can vary 
across 
classes



Iris Data (2 classes)

73variance learned for each class

Figures from William Cohen

z-axis is the difference of the posterior 
probabilities: p(y=1 | x) – p(y=0 | x)



Iris Data (3 classes)
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Iris Data (3 classes)

76variance = 1



Iris Data (3 classes)

77variance learned for each class



One Pocket
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One Pocket

79variance learned for each class



One Pocket

80variance learned for each class

Why doesn’t 
Naïve Bayes 

learn a better 
decision 

boundary?



DISCRIMINATIVE AND 
GENERATIVE CLASSIFIERS
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Generative vs. Discriminative
• Generative Classifiers:
– Example: Naïve Bayes
– Define a joint model of the observations x and the 

labels y:
– Learning maximizes (joint) likelihood
– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression
– Directly model the conditional:  
– Learning maximizes conditional likelihood
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p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative
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