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Reminders

Lecture 18: this Friday; Recitation on
Wednesday

Homework 6: Learning Theory / Generative
Models

— Out: Fri, Mar. 17
— Due: Fri, Mar. 24 at 11:59pm

Exam 2 (Thu, Mar 30)
Exam 3 (Tue, May 2)




MAP ESTIMATION



MLE vs. MAP

Suppose we have data D = {z(V1V




MLE vs. MAP

Suppose we have data D = {z(W} ¥

Principle of maxj Important! hLE):

Choose the paran ysyally the parameters are [0od

of the S{f};‘a- continuous, so the prioris a
0 — argg probability density function F)

Maximum Likelihood Estimate (MLE)

Principle of maximum a posteriori (MAP) EY /mation:
Choose the parameters that maximize the\ _Ssterior
of the parameters given the data.  Prior

N
OMLE = argmaxg p(0|D) = argmaxy f(0) Hp(x(i)‘e)
i=1

Maximum a posteriori (MAP) estimate



The MAP Estimation Objective

/ postteﬂ}‘ ikelinoo ion _
- " p(D | 8)p(6)
MAP: p(0 | D) = (D) — Bayes Rule
: not a function of @

| o 10030

Orrap = argmaxp(6 | D)
0

— argmax P21 Op(6)
0 p(D)
= arggnaxp(D | 8)p(0)

= argmax logp(D | 8) + log p(0)
9 \
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Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~p(x|6)
Write the log-likelihood
(0) = log p(x([0) + ... +log p(x(N)])

Compute partial derivatives, i.e., the gradient
040)/08, = ...

040)/08), = ...

Set derivatives equal to zero and solve for 6
040)/00,,=0oforallme{y,..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @M



Recipe for Closed-form MAP

Assume data was generated iid from some model, i.e., write
the generative story

0 ~ p(0) and then for all i: x) ~ p(x|0)
Write the log posterior

twar(8) = log p(6) + log p(xV|8) + ... +log p(x"]6)

Compute partial derivatives, i.e., the gradient
GZMAP(G)/aQ — oo

0ap(0)/00y = ...
Set derivatives to equal zero and solve for ©

06uap(0)/00,, =0 forallm e {1, ..., M}

OMAP = solution to system of M equations and M variables
Compute the second derivative and check that {0) is
concave down at VAP



The Prior Distribution

* The prior distribution encodes domain knowledge about the
problem.

* Question: Why do we use the Beta distribution as the prior
for the Bernoulli?

* Reason #1: It has the right support, i.e. [0,1].

Example: Beta prior “fair coin” Example: Beta prior “unfair coin”

12 120
10 100
8 60
6 60
4 40
iR
2 20
0 / \ 0

0 0.10.20.30.405060.70.850.9 1 0 0.10.20.30.40.50.60.70.80.91

Flé] a=101,8=101) flo|a=101,8=1)



The Prior Distribution

The prior distribution encodes domain knowledge about the
problem.

Question: Why do we use the Beta distribution as the prior
for the Bernoulli?

Reason #2: The Beta is a conjugate prior for the Bernoulli.
Definition: A distribution is the conjugate prior of a
likelihood if the form of the posterior is the same as the form
of the prior.

p( I D) p(D I 0) p(6)

Beta Bernoulli Beta
Dirichlet Multinomial Multinomial yes
Gaussian Guassian Guassian yes
Gamma Exponential Gamma yes

2 Multinomial Logistic Normal no

10



. Derivative: — —

MLE of Bernoulli Model

. Model: x'9 ~ Bernoulli(¢) fori =1,..., N

. Log-posterior:

Imie(@) = logp(D | ¢)
= log (o™ (1 — ¢)™°)
= N log(¢) + Ny log(1 — ¢)

af!\/\LE(qﬁ) _ Nl NO

20, ¢ 1—09
Nt N
Ni+Ny N

. Set to zero and solve: o g =

11



MAP of Beta-Bernoulli Model

1. Model: ¢ ~ Beta(a, ()
x\" ~ Bernoulli(¢) fori =1,..., N



MAP of Beta-Bernoulli Model

. Model: ¢ ~ Beta(a, 3)
x'9 ~ Bernoulli(¢) fori =1,..., N

. Log-posterior:

uar(@) = log[p(D | ¢)f(¢ | a, B)]

—tog | (6" (1= ™) ((ra g V-0 )]

TS VG AT VRGP S S S
= log |@"* (1—¢)\or B(a,ﬁ)]

— (N1 + o — Dlog(é) + (No + 8 — 1) log(1 — ) — log B(a, )
= N log(¢) + N log(1l — ¢) — log B(a, )

.. Olwar(¢) Ny Ng
. Derivative: = — —
00 o 1—0

N{ B Ni+a—1

N/ +N), N +a—-1+Ng+8-1 13

. Settozeroandsolve: oppap =



MAP of Beta-Bernoulli Model

Example 1 (MLE) Suppose D = {8H, 2T}

8

¢MLE — E = 0.8

Example 2 (MAP) Same dataset, but ¢ ~ Beta(a = 101, 5 = 101)

8+ 101 -1 108

= ~ 0.5
+101 —1+4+2+ 101 —1 108 4+ 102

¢N\AP —

Example 3 (MAP) Same dataset, but ¢ ~ Beta(a = 101,38 = 1)

108

~ 1.0
108 + 2

ngAP —

Example 4 (MLE) Suppose D = {108H, 1027}

108

~ 0.5
108 4+ 102

¢N\LE —

“fair
— coin”
prior

“unfair
— coin”’
prior




Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE | MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



NAIVE BAYES



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news

The Economist The Onion

Soybean Prices Surge as South
American Outlook Deteriorates

Drought is pushing prices up, with shortfalls in production expected to
boost demand for U.S. beans

Agricultural research firm Farm Futures last month forecast that planted soybean

acreage in the U.S. may exceed corn for only the second time in history.
PHOTO: RORY DOYLE/BLOOMBERG NEWS

By Kirk Maltais
Feb.12,2022 7:00 am ET

@ suare A\ TEXT 28

© Listentoarticle (2minutes)

U.S. soybean prices have surged in recent months amid shrinking forecasts for
South American crops.

Prices for soybeans—the base ingredient in many food products, poultry and
livestock feed and renewable fuel, among other things—are edging back toward

highs reached last year, which hadn’t previously been seen in a decade

Watchdog Warns Nearly Every Food
Brand In U.S. Owned By Handful Of
Companies, Which In Turn Are
Controlled By Newman’s Own

Today 9:25AM | Alerts

WASHINGTON—Calling for a full-scale Federal Trade Commission
investigation into the sauce and salad dressing brand, the American Antitrust
Institute issued a report Thursday warning that nearly every food brand in the
United States was owned by a handful of companies, which in turn were
controlled by Newman’s Own. “Kellogg’s, General Mills, PepsiCo, Kraft Heinz—

all of these companies are just Newman'’s Own by another name,” said Diana L.

23



Bag-of-
Words
Model

10/31/22

X1 X2 X3 Xa X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) (Dr. Seuss)
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Bag-of-
Words
Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

The Cat in the Hat
(by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The Cat in the Hat#/media/File:The Cat in the Hat.png
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https://en.wikipedia.org/wiki/The_Cat_in_the_Hat

Bag-of-
Words
Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0

Go, Dog. &%
Go!

by P.D.Eastman

Source: https://en.wikipedia.org/wiki/Go, Dog. Go!#/media/File:Go Dog Go.jpg

Go, Dog. Go!
(by P. D. Eastman)

27


https://en.wikipedia.org/wiki/Go,_Dog._Go!

X1 X2 X3 Xa X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) (Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

Bag_of- 0 0 0 1 0 0 1
Words wDrSeuss

One fish

M O d el One Fish, Two Fish, % two fish

Red Fish, Blue Fish
! ‘f{ red fish
(by Dr. Seuss) >

Source:
https://en.wikipedia.org/wiki/One Fish, Two Fish, Red Fish, Blue Fish#/media/File:One Fish Two Fish Red Fish Blue Fish (cover art).jpg

10/31/22 28


https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish

Bag-of-
Words
Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0

— O O

Are You My Mother?
(by P. D. Eastman)

by P.D.Eastman

Source: https://en.wikipedia.org/wiki/Are You My Mother%3F#/media/File:Areyoumymother.gif

29


https://en.wikipedia.org/wiki/Are_You_My_Mother%3F

Naive Bayes: Model

Whiteboard
— Generating synthetic "labeled documents”
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
y Xp o Xo X3 e Xy

““ ol 1|01 .| 1 "“

1 o|1]|o0 1
1 111 |1 1
0 O 0|1 1
0 110 | 1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
Securit).r Briefing Asking About Egyptian

— If a document contains the word we__
“Donald”, it’s extremely likely to [
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high

33



Q&A

Q: Why would we use Naive Bayes? Isn’t it too
Naive?
A: Naive Bayes has one key advantage over

methods like Perceptron, Logistic
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative
training procedures that might require

hundreds of epochs, Naive Bayes computes
its parameters in closed form by counting.




Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., write
the generative story

x® ~p(x|6)
Write the log-likelihood
(0) = log p(x([0) + ... +log p(x(N)])

Compute partial derivatives, i.e., the gradient
040)/08, = ...

040)/08), = ...

Set derivatives equal to zero and solve for 6
040)/00,,=0oforallme{y,..., M}
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that {0) is
concave down at @M



BERNOULLI NAIVE BAYES



Model 1: Bernoulli Naive Bayes

Data: Binary feature vectors, Binary labels

x € {0,1}M

Generative Story:
y ~ Bernoulli(¢)
z1 ~ Bernoulli(d, 1)
zo ~ Bernoulli(f, 2)

zpr ~ Bernoulli(6, ar)

Model:

y € {0,1}
qu,e(m) ?/) — pgb,e(xla ce oy LM, y)
M
=po(y) || po(zmly)
m=1

= [(9)V(1 - )



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

39



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE

parameters

Count
Variables:

Maximum
Likelihood
Estimators:

N
Ny—1 = Zﬂ(y(i) =1)
i=1
N .
Ny=o = Y 1(z" =0)
i=1

N
Nyzo,xmzl = Zﬂ(y(z) =0A CC%) = 1)
i=1

Ny=1
?="N
60 = NyzO,mmzl
3 Ny:O
91 = Nyzl,xmzl
3 Ny—l

Data:

Y Xp X2 X3 XM
0 110 | 1 [.. | 1
1 O| 1] 0 |..]1
1 o | 1 1 1
0) 0) 0o 1 1
0) 1 0o 1 0)
1 1] 0| 1 0

Question 1:

What is the MLE of ¢?

(A) 0/6 (B)1/6 (C) 2/6 (D) 3/6
(E) 4/6 (F) 5/6 (G) 6/6 (H) 3.



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE

parameters

Count
Variables:

Maximum
Likelihood
Estimators:

N
Ny—1 = Zﬂ(y(i) =1)
i=1
N .
Ny=o = Y 1(z" =0)
i=1

N
Nyzo,xmzl = Zﬂ(y(z) =0A CC%) = 1)
i=1

Ny=1
?="N
60 = NyzO,mmzl
3 Ny:O
91 = Nyzl,xmzl
3 Ny—l

Data:

Y Xp X2 X3 XM
0 110 | 1 [.. | 1
1 O| 1] 0 |..]1
1 o | 1 1 1
0) 0) 0o 1 1
0) 1 0o 1 0)
1 1] 0| 1 0

Question 2:

What is the MLE of 0, ;?

(A) 0/6 (B)1/6 (C) 2/6 (D) 3/6
(E) 4/6 (F) 5/6 (G) 6/6 (H) 3.



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE
parameters

N
Count Nyo1 =Y I(yD =1
Variables: ’ =1

N
Nyoo =3 169 =0
1=1

N
Ny=0,z,,=1 = Zﬂ(y(i) =0 =)

=1

Maximum b = Ny:l
Likelihood N
Estimators: Ny=0,,,=1
QO,m — N
y=0
1,m =
m Ny—l

MLE for Naive
Bayes is a splendid
learning algorithm
for when you have

say billions of
training examples

and hundreds of
millions of features!

You only need one
pass through the
data to perform
some counting.




MAP ESTIMATION FOR
BERNOULLI NAIVE BAYES



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



A Shortcoming of MLE

For Naive Bayes, suppose we never observe the word
“Unicorn”in areal news article.

In this case, what is the MLE of the following quantity?
p(xunicorn I y:real) =
SN Iy =0Aal) =1)

> I(y® = 0)

Now suppose we observe the word “unicorn” at test
time. What is the posterior probability that the article
was a real article?

Recall: Oko =

p(x|ly = real)p(y = real)
p(x)

p(y = real|x) =

46



Recipe for Closed-form MAP
Estimation

Assume data was generated i.i.d. from some model

(i.e. write the generative story)
0~ p(g 0) and then for all i: x( ~ p(x|0©)

Write log-likelihood

{unp(0) = log p(8) + log p(x(M|@) + ... +log p(x(V)|0)
Compute partial derivatives

00ap(0)/00, = ...

aé[\/\AP(e)/aez =

aéMAp(e)/aeM — oo
Set derivatives to zero and solve for 6
00yar(0)/00,, =0 forallme{y, ..., M}

OMAP _

Compute the second derivative and check that {0) is concave down
at eMAP



Model 1: Bernoulli Naive Bayes
MAP Estimation (Beta Prior)

1. Generative Story: 2. Likelihood:
The parameters are drawn Urrap(6,0)
once for the entire dataset. = log [p(¢,0|a, 5, ,5) (D|#, 0)]
¢ ~ Beta(a/, §')
) (ot T ()
fory € {0,1}:
Om ., ~ Beta(a, B) 3. MAP Estimators: (¢MAP gMAPY — aremax (h 4p (¢, 0)

¢,0
foric {1,...,N}:

9 ~ Bernoulli(¢)
forme{l,...,M}: =

xﬁ,i) ~ Bernoulli(6,) ,,)

Take derivatives, set to zero and solve...
(Oé/ — ].) + Ny:l

(¢ =1)+ (B -1)+ N
N 90 = (Oé B 1) + Ny:O,:pmzl

Mt =2 160 =1) " (=14 (8-1) + Ny=o

6, (@—=1)+ Ny=1,2,,-1

I 0 | (a=1)+ (8 —1) + Ny=1
Ny:(”xm:l:;]l(y =0hem =1) Vme{l,..., M}

N
Ny—o = Zﬂ(y(i) =0)
i=1




Model 1: Bernoulli Naive Bayes
MAP Estimation (Beta Prior)

1. Generative Story: 2. Likelihood:

The parameters are drawn Urrap(6,0)

once for the entire dataset. = log [p(¢,0|a’, B, , B)p(D|¢, 0)]

¢ ~ Beta(a’, 3) M N

forme {1,..., M} = log [(p(qblo/,ﬁ’) 11 p(eo,mm,ﬁ)) (Hp(x@,y%, 9))]
fory € {0,1}: " =

3. MAP Estimators: (¢MAP gMAPY — aremax (h 4p (¢, 0)
®,0

Take derivatives, set to zero and solve...

A common choice b= — :
for the class prior: ‘ (o' =)+ (F =1+ N

" (a=1)+(8-1) + Nyo

o’ =1and B’ =1 o _ _(@=1)+Nyrp,=
P (a=1)+ (8- 1) + Ny
Since Beta(1,1) = Vm e {1,..., M}
Uniform(o,1 50



THE NAIVE BAYES FRAMEWORK



Many NB Models

There are many Naive Bayes models!

1. Bernoulli Naive Bayes:
— for binary features
2. Multinomial Naive Bayes:
— for integer features
3. Gaussian Naive Bayes:
— for continuous features
4. Multi-class Naive Bayes:
— for classification problems with > 2 classes

— event model could be any of Bernoulli, Gaussian,
Multinomial, depending on features



Model 2: Multinomial Naive Bayes

Support: Option 1: Integer vector (word IDs)

X = |r1,%2,...,Tp ]| Wherex,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y" ~ Bernoulli(¢)
forj e {1,...,M;}:

% ~ Multinomial(8,,», 1)

Model: .
Ps.6(@,y) = ps(y) | | po. (zxly)
k=1

M;
= (¢)?(1— ) [] by.c,
j=1



Model 3: Gaussian Naive Bayes

Support: X € RK

Model: Product of prior and the event model

p(may) :p(xlaﬂwa?y)

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Model 3: Gaussian Naive Bayes

Support: = RK
Model:

* Binary label
* Y ~ Bernoulli(m)
- fr ==y
* N =# of data points
* Ny_q = # of data points with label 1

* Real-valued features

- XylY =y ~ Gaussian(ud,y, Uo%,y)

Ao 1 (n)
Md,y - NY:y Zn:y(n)zy Xd
2
° A2 — 1 (n) &
O-d,y - NY= Zn:y("—):y (xd Hdry)

* Ny—, = # of data points with label y



Model 4: Multiclass Naive Bayes

Model:

The only change is that we permit y to range over C
classes.

p(way) :p(ml,...,ZUK,y)

k
Now, y ~ Multinomial(o,
rate conditional distributio
classes.

) and we have a sepa-
(xr|y) for each of the C

)
SR



Model 4’: Multiclass Gaussian
Naive Bayes
Support: = RK
Model:

* Discrete label (Y can take on one of M possible values)
* Y ~ Categorical(my, ..., ;)
- Ny—m
C i = /N
* N =# of data points
* Ny_,, = # of data points with label m

* Real-valued features
* X4|Y = y ~ Gaussian(pgy, 05 )

(n)

~ 1
Zn;y(”—):y xd

Hday =

g2 o Ly m) _ ~ \*
Gd'y_Ny=y n:y™=y Xa Ha,y

* Ny—, = # of data points with label y



Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y) = P(Y) [] PCXIY)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X;|Y) we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



-\la'l've Bayes Model




VISUALIZING GAUSSIAN NAIVE
BAYES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

66



Iris Data (2 classes)

Ins data
45
o
o
o
Gl o}
o
o
o0
o o o
35 o o o
e} o o o o +
o 0
o o 0 o + * * ¥ *
o +
3+ o 0 o] #* * ¥ #* * *
o * ¥ #*
25 * * ¥ *
o * #*
5 | i} | | ] ] ]
4 4.5 5 55 6 6.5 7 7.5

Figure from William Cohen



Iris Data (2 classes)

4.5 -

25

2 | L | | | | |

4 45 5 55 6 6.5 7 7.5

Figure from William Cohen



Iris Data (2 classes)

Nalve
Bayes has 50
a linear
decision  *°° .
boundary 5
. . 4.0 - °
if variance ..
(Slgma) IS 3.5 - ¢ :o o (]
constant R I
acrOSS 3.0 - ) ¢ ::o v vy v v v: Y
classes y } R
2.57 Y v zvvv v
2.0 - v
1.5 -
1.0 -



Iris Data (2 classes)

Classification with Naive Bayes

Naive
Bayes has °°-
a linear
decision .
boundary ‘o 5 ©
if variance . .
(Slgma) IS 3.5 ¢ :o ° °
constant * * st o,
acrOSS 3.0 - .: ¢ ::o v :; Vv:v y :; ’
classes R S R A
2.5 - . v Evvv v
2.0 - v
1.5 -
1.0’ | | | |
4 5 6 7

variance =1




Naive
Bayes can
have a
nonlinear
decision
boundary
if variance
(sigma)
canvary
across
classes

5.0 -

iSS

4.0 -

w

2.0 -

1.5 -

1.0 -

5 -

5 -

Iris Data (2 classes)

Classification with Naive Bayes

[ ]
[ ] ([}
[ ] ([ BN ]
[ ] [}
[ B I} [}
[ ] [ ] [ B I} [ ]
[ I )
[ ] o 0 [ ] v
[ ) [ X} v
® 0 ® 00 vy v v
() vy vVYvyy
v v v v
v v v
v vy
v v
v v
[ ] v v v
|
4 5 6 7

variance learned for each class




Iris Data (2 classes

z-axis is the difference of the posterior
probabilities: p(y=1| x) - p(y=0 | x)

Figures from William Cohen

variance learned for each class .




Iris Data (3 classes)

5.0 -

4.5 -

4.0 -

3.5 -

|
|
|
|
| |
> >
|
>EHNE
EEE N
> u
> >
u >
|
>>> >R
>r>H> >
> > > >
>
>
[ J
[ ] u >
[ ]
(N J
[ J
| |
o Te}
oM oN

2.0 -

1.5 -

1.0 -
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Iris Data (3 classes)

Classification with Naive Bayes

76



Iris Data (3 classes)

Classification with Naive Bayes

5.0 -

4.5 -

4.0 -

u
u
u
u
HE
u
>
[
[ ]
e o [ ]
[
[ N
o0 o000
o000
[ ]
e o
|
N
m

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

variance learned for each class




One Pocket
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One Pocket

Naive Bayes Distribution

variance learned for each class




One Pocket

Classification with Naive Bayes

Why doesn’t

Naive Bayes .. .-z . - . .00 o.a
) ®e :°. 5 e ..o.o. e ‘ .
learn a better %e I A P IR
o o o ° oo * 00.. ’ e % .':. :: e
decision , W v, T
:'.Q. 'vv ' v ‘. ° : L .o
boundary? vy T e,
o0 ® vY v v v WY Jee e
® .:vv vv v v v vvv i o .. ¢
S ..‘ v y A 'v"' v'v . Lt
: °.~° - 5 WVV' v ! w' vy %o °
-1 @ .. -3, ’ ..v Yoy v v v ¢ ro ':'
e . o %o,y : .vvv \2 . ° . oo,
B - "’.' . . s 0 e "-' . .' R
.o o ° O. ° ° o $.0 o %o,0
o.. L )¢ ° ° LS L ¢ ® ° e
-3 |
-3 -2 -1 0 1 2

variance learned for each class




DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(m, y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Gen. Disc.

MLE | []»x®,y%|6) [[px",6)

MAP | p(0) | [p(x®,416) p(6) ] [p(x¥x,0)




