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Reminders

• Homework 6: Learning Theory / Generative 
Models
– Out: Fri, Mar. 17
– Due: Fri, Mar. 24 at 11:59pm
– IMPORTANT: only 2 grace/late days permitted

• Practice Problems: Exam 2
– Out: Fri, Mar. 24

• Exam 2
– Thu, Mar. 30, 6:30pm – 8:30pm
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EXAM 2 LOGISTICS
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Exam 2
• Time / Location

– Time: Thu, Nov. 10, 6:30pm – 8:30pm
– Location & Seats: You have all been split across multiple rooms. 

Everyone has an assigned seat in one of these room. Please watch 
Piazza carefully for announcements.

• Logistics
– Covered material: Lecture 8 – Lecture 17
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back, 

handwritten with pen/pencil or tablet)
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Topics for Exam 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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Topics for Exam 2
• Classification
– Binary Logistic 

Regression
• Important Concepts
– Stochastic Gradient 

Descent
– Regularization
– Feature Engineering

• Feature Learning
– Neural Networks
– Basic NN Architectures
– Backpropagation

• Learning Theory
– PAC Learning

• Generative Models
– MLE / MAP
– Naïve Bayes
– Generative vs. 

Discriminative

• Regression
– Linear Regression
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SAMPLE QUESTIONS
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Sample Questions
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3.2 Logistic regression

Given a training set {(xi, yi), i = 1, . . . , n} where xi 2 Rd is a feature vector and yi 2 {0, 1}
is a binary label, we want to find the parameters ŵ that maximize the likelihood for the
training set, assuming a parametric model of the form

p(y = 1|x;w) = 1

1 + exp(�wTx)
.

The conditional log likelihood of the training set is

`(w) =
nX

i=1

yi log p(yi, |xi;w) + (1� yi) log(1� p(yi, |xi;w)),

and the gradient is

r`(w) =
nX

i=1

(yi � p(yi|xi;w))xi.

(a) [5 pts.] Is it possible to get a closed form for the parameters ŵ that maximize the
conditional log likelihood? How would you compute ŵ in practice?

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, x 2 {0, 1}d ⇢ Rd,
where feature x1 is rare and happens to appear in the training set with only label 1.
What is ŵ1? Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of ŵ?
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Samples Questions

12

10-601B: MACHINE LEARNING Page 5 of ?? 10/10/2016

2 To err is machine-like [20 pts]

2.1 Train and test errors
In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D

train, and tested on a separate
test set Dtest. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.

(b) Decrease the training data size.

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.

(e) Train on a combination of Dtrain and D
test and test on D

test

(f) Conclude that Machine Learning does not work.

2. [5 pts] Explain your choices.

3. [2 pts] What is this scenario called?

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?
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(a) (b)

2.2 True and sample errors
Consider a classification problem with distribution D and target function c

⇤ : Rd
7! ±1. For any

sample S drawn from D, answer whether the following statements are true or false, along with a
brief explanation.

1. [4 pts] For a given hypothesis space H , it is possible to define a sufficient size of S such that
the true error is bounded by the sample error by a margin ✏, for all hypotheses h 2 H with a
given probability.

2. [4 pts] The true error of any hypothesis h is an upper bound on its training error on the
sample S.
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5 Learning Theory [20 pts.]

5.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [3 pts.] T or F: It is possible to label 4 points in R2 in all possible 24 ways via linear
separators in R2.

(b) [3 pts.] T or F: To show that the VC-dimension of a concept class H (containing
functions from X to {0, 1}) is d, it is su�cient to show that there exists a subset of X
with size d that can be labeled by H in all possible 2d ways.

(c) [3 pts.] T or F: The VC dimension of a finite concept class H is upper bounded by
dlog2 |H|e.

(d) [3 pts.] T or F: The VC dimension of a concept class with infinite size is also infinite.

(e) [3 pts.] T or F: For every pair of classes, H1, H2, if H1 ✓ H2 and H1 6= H2, then
VCdim(H1) < VCdim(H2) (note that this is a strict inequality).

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a
consistent learner will output a concept that achieves 0 error on the training instances.
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6 Extra Credit: Neural Networks [6 pts.]

In this problem we will use a neural network to classify the crosses (⇥) from the circles (�) in
the simple dataset shown in Figure 5a. Even though the crosses and circles are not linearly
separable, we can break the examples into three groups, S1, S2, and S3 (shown in Figure 5a)
so that S1 is linearly separable from S2 and S2 is linearly separable from S3. We will exploit
this fact to design weights for the neural network shown in Figure 5b in order to correctly
classify this training set. For all nodes, we will use the threshold activation function

�(z) =

⇢
1 z > 0
0 z  0.

(a) The dataset with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21w12 w22

w31
w32

(b) The neural network architecture

Figure 5

(a) Set S2 and S3 (b) Set S1 and S2 (c) Set S1, S2 and S3

Figure 6: NN classification.
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Can the neural network in Figure (b) correctly classify the dataset given in Figure (a)?

Neural Networks
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Apply the backpropagation algorithm to obtain 
the partial derivative of the mean-squared error 
of y with the true value y* with respect to the 
weight w22 assuming a sigmoid nonlinear 
activation function for the hidden layer.

Neural Networks
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1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X1, . . . , Xn ⇠ Bernoulli(✓).
We are going to derive the MLE for ✓. Recall that a Bernoulli random variable X takes
values in {0, 1} and has probability mass function given by

P (X; ✓) = ✓
X(1� ✓)1�X

.

(a) [2 pts.] Derive the likelihood, L(✓;X1, . . . , Xn).

(b) [2 pts.] Derive the following formula for the log likelihood:

`(✓;X1, . . . , Xn) =

 
nX

i=1

Xi

!
log(✓) +

 
n�

nX

i=1

Xi

!
log(1� ✓).

(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: ✓̂ =
1

n
(
Pn

i=1 Xi).
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1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.

(b) [2 pts.] T or F: Naive Bayes can only be used with MAP estimates, and not MLE
estimates.

1.4 Probability

Assume we have a sample space ⌦. Answer each question with T or F. No justification

is required.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

(b) [1 pts.] T or F: P (A|B) / P (A)P (B|A)
P (A|B)

. (The sign ‘/’ means ‘is proportional to’)

(c) [1 pts.] T or F: P (A [ B)  P (A).

(d) [1 pts.] T or F: P (A \ B) � P (A).
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1 Naive Bayes, Probability, and MLE [20 pts. + 2 Extra Credit]

1.1 Naive Bayes

You are given a data set of 10,000 students with their sex, height, and hair color. You are
trying to build a classifier to predict the sex of a student, so you randomly split the data
into a training set and a testing set. Here are the specifications of the data set:

• sex 2 {male,female}

• height 2 [0,300] centimeters

• hair 2 {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you
might naturally or intuitively make about the dataset) answer each question with T or F

and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: As height is a continuous valued variable, Naive Bayes is not appropriate
since it cannot handle continuous valued variables.

(b) [2 pts.] T or F: Since there is not a similar number of men and women in the dataset,
Naive Bayes will have high test error.

(c) [2 pts.] T or F: P (height|sex, hair) = P (height|sex).

(d) [2 pts.] T or F: P (height, hair|sex) = P (height|sex)P (hair|sex).
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DISCRIMINATIVE AND 
GENERATIVE CLASSIFIERS
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Generative vs. Discriminative
• Generative Classifiers:
– Example: Naïve Bayes
– Define a joint model of the observations x and the 

labels y:
– Learning maximizes (joint) likelihood
– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression
– Directly model the conditional:  
– Learning maximizes conditional likelihood

21

p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative

23



MAP Estimation and Regularization

24

θMAP = argmax
θ

log p(D | θ) + log p(θ)

= argmin
θ

− log p(D | θ) − log p(θ)

= argmin
θ

JD(θ) + r(θ)

MAP

regularization

fit the data 
well

keep the 
model simple

Example: L2 regularization is 
equivalent to a Gaussian prior



Generative vs. Discriminative
Finite Sample Analysis (Ng & Jordan, 2001)
[Assume that we are learning from a finite training dataset]

Naïve Bayes and logistic regression form a generative-
discriminative model pair: 

25

If model assumptions are correct: as the amount of training 
data increases, Gaussian Naïve Bayes and logistic regression 
approach the same (linear) decision boundary!

Furthermore, Gaussian Naïve Bayes is a more efficient 
learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has 
lower asymptotic error and does better than Gaussian Naïve 
Bayes



solid: NB 
dashed: LR

26
Slide courtesy of William Cohen



Naïve Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ….” Andrew Ng 
and Michael Jordan, NIPS 2001.

27

solid: NB 
dashed: LR

Slide courtesy of William Cohen



Naïve Bayes vs. Logistic Reg.

Features

28

Naïve Bayes: 
Features x are assumed to be conditionally independent 
given y. (i.e. Naïve Bayes Assumption)

Logistic Regression: 
No assumptions are made about the form of the features x.  
They can be dependent and correlated in any fashion. 



Naïve Bayes vs. Logistic Reg.

Learning (Parameter Estimation)

29

Naïve Bayes: 
Parameters are decoupled à Closed form solution for MLE

Logistic Regression: 
Parameters are coupled à No closed form solution – must 
use iterative optimization techniques instead



Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

30

Bernoulli Naïve Bayes: 
Parameters are probabilities à Beta prior (usually) pushes 
probabilities away from zero / one extremes

Logistic Regression: 
Parameters are not probabilities à Gaussian prior 
encourages parameters to be close to zero 

(effectively pushes the probabilities away from zero / one 
extremes)



Naïve Bayes vs. Logistic Regression
Question:
You just started working at a 
new company that manufactures  
comically large pennies. Your 
manager asks you to build a 
binary classifier that takes an 
image of a penny (on the factory 
assembly line) and predicts 
whether or not it has a defect. 

What follow-up questions would 
you pose to your manager in 
order to decide between using a 
Naïve Bayes classifier and a 
Logistic Regression classifier?

31

Answer:



Summary

1. Naïve Bayes provides a framework for 
generative modeling

2. Choose the feature distributions p 𝑥! 𝑦
based on the data (e.g., Bernoulli for binary 
features, Gaussian for continuous features)

3. Train using MLE or MAP estimation
4. Make predictions by maximizing the 

posterior 𝑝 𝑦 𝒙"

32



Learning Objectives
Naïve Bayes

You should be able to…
1. Write the generative story for Naive Bayes
2. Create a new Naive Bayes classifier using your favorite probability 

distribution as the event model
3. Apply the principle of maximum likelihood estimation (MLE) to learn 

the parameters of Bernoulli Naive Bayes
4. Motivate the need for MAP estimation through the deficiencies of 

MLE
5. Apply the principle of maximum a posteriori (MAP) estimation to learn 

the parameters of Bernoulli Naive Bayes
6. Select a suitable prior for a model parameter
7. Describe the tradeoffs of generative vs. discriminative models
8. Implement Bernoulli Naives Bayes
9. Describe how the variance affects whether a Gaussian Naive Bayes 

model will have a linear or nonlinear decision boundary

33



THE BIG PICTURE
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ML Big Picture

35

Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Classification and Regression: The Big Picture
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MOTIVATION: STRUCTURED 
PREDICTION

37



Structured Prediction
• Most of the models we’ve seen so far were 

for classification
– Given observations: x = (x1, x2, …, xK) 
– Predict a (binary) label: y

• Many real-world problems require 
structured prediction
– Given observations: x = (x1, x2, …, xK) 
– Predict a structure: y = (y1, y2, …, yJ) 

• Some classification problems benefit from 
latent structure

38



Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

39



n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging

40

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)



Dataset for Supervised 
Handwriting Recognition

41

D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.
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Figures from (Chatzis & Demiris, 2013)
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x(1)
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Sample 2:

o c n

e b a e s
Sample 2:
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y(2)

x(2)

y(3)

x(3)



Dataset for Supervised 
Phoneme (Speech) Recognition

42

D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)

h# ih w z iy
Sample 1: y(1)

x(1)

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

f r s h#
Sample 2:

ao ah s y(2)

x(2)



(very small) Dataset for
Scene Understanding

43(Li et al., 2009)
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y(1)



Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from

Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil

125

Congressional Voting

44(Stoyanov & Eisner, 2012)

Application:

• Variables:

– Text of all speeches of a 
representative 

– Local contexts of 
references between two 
representatives

• Interactions:
– Words used by 

representative and their 
vote

– Pairs of representatives 
and their local context



Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

45



Case Study: Object Recognition

Data consists of images x and labels y.

46

pigeon

leopard llama

rhinocerosy(1)

x(1)

y(2)

x(2)

y(4)

x(4)

y(3)

x(3)



Case Study: Object Recognition

Data consists of images x and labels y.

47

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.

48

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

X1

Z1

X2

Z2

X3

Z3

X4

Z4
X5

Z5
X7

Z7

X 6

Z 6

Y



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

ψ2 ψ4

X1

Z1

ψ1

X2

Z2

ψ3

X3

Z3

ψ5
X4

Z4

ψ7
X5

Z5

ψ9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4
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Structured Prediction
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Preview of challenges to come…
• Consider the task of finding the most probable 

assignment to the output 

Classification Structured Prediction
ŷ = �`;K�t

y
p(y|t)

where y � {+1, �1}

v̂ = �`;K�t
v

p(v|t)

where v � Y
and |Y| is very large



Machine Learning
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The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5



BACKGROUND
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Background: Chain Rule
of Probability

54

For random variables A and B:

P (A, B) = P (A|B)P (B)

P (X1, X2, X3, X4) =P (X1|X2, X3, X4)

P (X2|X3, X4)

P (X3|X4)

P (X4)

For random variables X1, X2, X3, X4:



Background:
Conditional Independence

55

Random variables A and B are conditionally
independent given C if:

P (A, B|C) = P (A|C)P (B|C) (1)

or equivalently:

P (A|B, C) = P (A|C) (2)

We write this as:

A |4 B|C (3)Later we will also 
write: I<A, {C}, B>



HIDDEN MARKOV MODEL (HMM)
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM

57

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5



Markov Models

Whiteboard
– Example: Tunnel Closures 

[courtesy of Roni Rosenfeld]
– First-order Markov assumption
– Conditional independence assumptions
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Totoro’s Tunnel

63



64



2m 3m 18m 9m 27m

O S S O C

Mixture Model for Time Series Data

66

We could treat each (tunnel state, travel time) pair as independent. This 
corresponds to a Naïve Bayes model with a single feature (travel time).

O .8
S .1
C .1

p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m)     =       (.8 * .2 * .1 * .03 * …)

O .8
S .1
C .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0



2m 3m 18m 9m 27m

O S S O C
1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

Hidden Markov Model

67

A Hidden Markov Model (HMM) provides a joint distribution over the the 
tunnel states / travel times with an assumption of dependence between 

adjacent tunnel states.

p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m)   = (.8 * .08 * .2 * .7 * .03 * …)

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

O .8
S .1
C .1



HMM:

“Naïve Bayes”:

From Mixture Model to HMM

68

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5



SUPERVISED LEARNING FOR 
HMMS

69



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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MLE of Categorical Distribution
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HMM Parameters:
Hidden Markov Model (v1)

72

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…
O .1 .2 .3
S .01 .02.03
C 0 0 0

O .8
S .1
C .1



HMM Parameters:
Hidden Markov Model (v1)
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…
O .1 .2 .3
S .01 .02.03
C 0 0 0

O .8
S .1
C .1

Joint Distribution (probability mass function):

p(x,y) = p(y1, C)

(

T
∏

t=1

p(xt | yt, A)

)(

T
∏

t=2

p(yt | yt−1, B)

)

= Cy1

(

T
∏

t=1

Ayt,xt

)(

T
∏

t=2

Byt−1,yt

)



Supervised Learning for HMM (v1)
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models

76

Yt Yt+1

Xt

Yt

Data: D = {(x(i),y(i))}Ni=1 where x = [x1, . . . , xT ]T and y = [y1, . . . , yT ]T

Likelihood:

!(A,B,C) =
N
∑

i=1

log p(x(i),y(i) | A,B,C)

=
N
∑

i=1








log p(y(i)1 | C)
︸ ︷︷ ︸

initial

+








T
∑

t=2

log p(y(i)t | y(i)t−1,B)

︸ ︷︷ ︸

transition








+








T
∑

t=1

log p(x(i)
t | y(i)t ,A)

︸ ︷︷ ︸

emission















MLE:

Â, B̂, Ĉ = argmax
A,B,C

!(A,B,C)

⇒ Ĉ = argmax
C

N
∑

i=1

log p(y(i)1 | C)

B̂ = argmax
B

N
∑

i=1

T
∑

t=2

log p(y(i)t | y(i)t−1,B)

Â = argmax
A

N
∑

i=1

T
∑

t=1

log p(x(i)
t | y(i)t ,A)

We can solve the above in closed form, which yields...

Ĉk =
#(y(i)1 = k)

N
, ∀k

B̂j,k =
#(y(i)t = k and y

(i)
t−1 = j)

#(y(i)t−1 = j)
, ∀j, k

Âj,k =
#(x(i)

t = k and y
(i)
t = j)

#(y(i)t = j)
, ∀j, k



HMM (v2):

HMM (v1):

HMM (two ways)
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0



HMM Parameters:

Hidden Markov Model (v2)

78

Emission matrix, �, where P (Xk = w|Yk = t) = At,w, �k

Transition matrix, ", where P (Yk = t|Yk�1 = s) = Bs,t, �k

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

O S C Start

O .9 .08 .02 0
S .2 .7 .1 0
C .9 0 .1 0
Start 0.8 0.1 0.1 0

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

O S C Start

O .9 .08 .02 0
S .2 .7 .1 0
C .9 0 .1 0
Start 0.8 0.1 0.1 0

For notational 
convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model (v2)

79X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Hidden Markov Model (v2)

80X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

Joint Distribution (probability mass function):

y0 = START



Supervised Learning for HMM (v2)
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models

82

Yt Yt+1

Xt

Yt

Data: D = {(x(i),y(i))}Ni=1 where x = [x1, . . . , xT ]T and y = [y1, . . . , yT ]T

We assume y(i)0 = START for all i

Likelihood:

!(A,B) =
N
∑

i=1

log p(x(i),y(i) | A,B)

=
N
∑

i=1





T
∑

t=1

log p(y(i)t | y(i)t−1,B)
︸ ︷︷ ︸

transition

+ log p(x(i)
t | y(i)t ,A)

︸ ︷︷ ︸

emission





MLE:

Â, B̂ = argmax
A,B,C

!(A,B)

⇒ B̂ = argmax
B

N
∑

i=1

T
∑

t=1

log p(y(i)t | y(i)t−1,B)

Â = argmax
A

N
∑

i=1

T
∑

t=1

log p(x(i)
t | y(i)t ,A)

We can solve the above in closed form, which yields...

B̂j,k =
#(y(i)t = k and y

(i)
t−1 = j)

#(y(i)t−1 = j)
, ∀j, k

Âj,k =
#(x(i)

t = k and y
(i)
t = j)

#(y(i)t = j)
, ∀j, k


