10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Exam 2 Review
+

Hidden Markov Models

Matt Gormley
Lecture 18
Mar. 24, 2023



Reminders

* Homework 6: Learning Theory [ Generative
Models

— Out: Fri, Mar. 17
— Due: Fri, Mar. 24 at 11:59pm

* Practice Problems: Exam 2
— Out: Fri, Mar. 24

* Exam 2
— Thu, Mar. 30, 6:30pm - 8:30pm




EXAM 2 LOGISTICS



Exam 2

* Time /Location
— Time: Thu, Nov. 10, 6:30pm - 8:30pm
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room. Please watch
Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 8 — Lecture 17
— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back,
handwritten with pen/pencil or tablet)



Topics for Exam 1

 Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important COnCEPtS — Linear Regression

— Overfitting
— Experimental Design



Topics for Exam 2

* (lassification * Learning Theory
— Binary Logistic — PAC Learning
Regression * Generative Models
* Important Concepts — MLE / MAP
— Stochastic Gradient — Naive Bayes
Descent - :
— Regularization Dﬁeﬂm{ﬂajewe

— Feature Engineering

* Feature Learning
— Neural Networks * Regression
— Basic NN Architectures — Linear Regression
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(z;,v:),7 = 1,...,n} where z; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a parametric model of the form

1
1+ exp(—wTz)’

p(y = 1|z w) =

The conditional log likelihood of the training set is

l(w) = Zyi log p(ys, |zi; w) + (1 — i) log(1 — p(yi, |75 w)),
i=1

and the gradient is

n

Ve(w) = (yi — pyilwi; w))z:.

=1

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, z € {0,1}¢ C R,
where feature x; is rare and happens to appear in the training set with only label 1.
What is w,? Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of w?



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"¥", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.
(b) Decrease the training data size.

(¢) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.
(e) Train on a combination of D™ and D' and test on D

(f) Conclude that Machine Learning does not work.



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"¥", and tested on a separate
test set D'*'. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?

2 2
u,:J ”””””” Test Error L,L:J Test Error
] m -
1] o L
= = -

Train Error Train Error

_'-'_‘——\_._\_‘_‘_‘_-_-_‘-
Model Complexity Model Complexity

(a) (b)



Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or F: It is possible to label 4 points in R? in all possible 2* ways via linear
separators in R?.

(d) [3 pts.] T or F: The VC dimension of a hypothesis space with infinite size is also infinite.



Sample Questions




Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X, ..., X,, ~ Bernoulli(#).
We are going to derive the MLE for 6. Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0)=0%(1—6)"*.

(a) [2 pts.] Derive the likelihood, L(0; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: 0 = — (3" | X;).
n



Sample Questions

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.



Sample Questions




DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(m, y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Gen. Disc.

MLE | []»x®,y%|6) [[px",6)

MAP | p(0) | [p(x®,416) p(6) ] [p(x¥x,0)




MAP Estimation and Regularization

Omap — argmax logp(D | 0) + log p(0)
MAP — o
= argmin —logp(D | 6) — log p(0)
_ 0
regularization — — arggnin Jp(0) +7(0)
fit the data keep the
well model simple

Example: L2 regularization is
equivalent to a Gaussian prior



Generative vs. Discriminative
Finite Sample Analysis (Ng & Jordan, 2001)

[Assume that we are learning from a finite training dataset]

Naive Bayes and logistic regression form a generative-
discriminative model pair:

If model assumptions are correct: as the amount of training
data increases, Gaussian Naive Bayes and logistic regression
approach the same (linear) decision boundary!

Furthermore, Gaussian Naive Bayes is a more efficient
learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has
lower asymptotic error and does better than Gaussian Naive
Bayes
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Naive Bayes makes stronger assumptions about the data

but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.
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Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



Naive Bayes vs. Logistic Reg.

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities = Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Naive Bayes vs. Logistic Regression

Question:

You just started working at a
new company that manufactures
comically large pennies. Your
manager asks you to build a
binary classifier that takes an
image of a penny (on the factory
assembly line) and predicts
whether or not it has a defect.

Answer:

What follow-up questions would
you pose to your manager in
order to decide between using a
Naive Bayes classifier and a
Logistic Regression classifier?



Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose the feature distributions p(x,,,|y)
based on the data (e.g., Bernoulli for binary
features, Gaussian for continuous features)

3. Train using MLE or MAP estimation

4. Make predictions by maximizing the
posterior p(y|x')



Learning Objectives

Naive Bayes

You should be able to...

1.
2.

U1

© 0N o

Write the generative story for Naive Bayes

Create a new Naive Bayes classifier using your favorite probability
distribution as the event model

Apply the principle of maximum likelihood estimation (MLE) to learn
the parameters of Bernoulli Naive Bayes

Motivate the need for MAP estimation through the deficiencies of
MLE

Apply the principle of maximum a posteriori (MAP) estimation to learn
the parameters of Bernoulli Naive Bayes

Select a suitable prior for a model parameter
Describe the tradeoffs of generative vs. discriminative models
Implement Bernoulli Naives Bayes

Describe how the variance affects whether a Gaussian Naive Bayes
model will have a linear or nonlinear decision boundary



THE BIG PICTURE



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Ifjalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
el ea ordinal Ordinal Classification ] g =
*  reinforcement learning real Regression o W Y.Y
°  activelearning ordering Ranking e 5 < O
. imitation learning . . _ S c 8 0
. domain adaptation multiple discrete  Structured Prediction =Ry §
«  online learning multiple continuous (e.g. dynamical systems) o S %C«_S
B e both discrete & (e.g. mixed graphical models) | & = as.0 5
. recommender systems ¢ Qo <12 o
«  feature learning cont. <X Z>wn
0 manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
¢ ensemble learning Systems: . . -
. i isi : Which are the ideas driving

distant supervision i i 5] rrae Al
«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
effective? * inductive bias
Theoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
TP 3. Training (optimization/ . enerative vs. discriminative

L probabilistic el

. . : * deep nets, graphical models
O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning

. 5. (Blind) Assessment ontest ~ *  distant rewards

O ML as optimization data



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Givendata D = {x(®, y®M}N e Perceptron: hg(x) = sign(8” x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87x
(parameterized by 9)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — (@©T (ANT (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=0(W) o(W) x+b'"/)+b'¥)

o e Generative Models: hg(x) = argmax pg (X, y)

Y

4. Predict on new test example Xpew using hg(+) u

= ho(Xnew) o Naive Bayes: po(x,y) = po(y) || po(zm | v)

m=1

<>

Optimization Method

Objective Function
e Gradient Descent: 8 — 0 — vV J(0) :

) N
e SGD:0 — 0 — 7V J(0) o MLE: J(8) = — Y log p(x, y®)
for¢ ~ Uniform(1,...,N) im1

N
1 :
where J(0) = — E J® (9 N | |
( ) N pt ( ) e MCLE: J(O) _ _E :logp(y(z) |X(z))

i=1
e mini-batch SGD
e L2 Regularized: J'(8) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + A||0]|1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X = (X5, X5 ..., Xp)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X5, X5 ..., Xp)
— Predict a structure: Yy=05Y2» -0 V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OIS,
Sample 4: ‘ ‘ ‘ ‘ ‘




Dataset for Supervised
Handwriting Recognition
Data: D = {z™ ymWN_

N JOXOROIOXOI JOROIOMNEE

ANGEHEEEEHN |-
B YoYoX JoYoroY MR

LA |CR——
" 90000000 -
IIIIEIEI =

Figures from (Chatzis & Demiris, 201



Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z\™, ym

QQQQQQQQQQ oy

Figures from (Jansen & Niyogi, 2013)



(very small) Dataset for
Scene Understanding

- (D

" y(l)




Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by w
representative and their
vote B
— Pairs of representatives |
and their local context B




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.

{ Nt Sy
P A7 )

46



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
l[atent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

48



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

49



Structured Prediction




Machine Learning




Machine Learning

l"‘l’h ZANRARY



BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

ALB‘C’ Later we will also
write: I<4, {C}, B>



HIDDEN MARKOV MODEL (HMM)



From Mixture Model to HMM

T
“Naive Bayes””: H (X¢[Ye)p

e Eé 7

T
HP thYt Hp Y:|Y; 1)
t:1




Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

58
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,8,5,0,C,2m,3m, 18m,9m,27m) =  (.8*.2*.1*.03%...)
O .8 O .8
S | .1 S | .1
C .1 C| .1

® c

% | 1min
v | 2min

3min
% | 1min

W

© | [w | 3min

66



Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m,3m, 18m,9m,27m) = (.8 *.08 * .2%.7% 03 %...)

3 O/ S|C O S|C
Q- O |.9.08.02 0|.9.08.02
S | .1
S .2.7 1 S|.2|.7].1
2 Cl9/ 0] C .9/0]4
: 10 ©
S| 5| 5 S8 .8
E| B & E| & &
(=) (om
A(.21(.3 Ol .1].2].3

67



From Mixture Model to HMM

T
“Naive Bayes””: H (X¢[Ye)p

e Eé 7

T
HP thYt Hp Y:|Y; 1)
t:1




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die N times. That is, we have data

D= {x(i)}f]iil

where () € {1,..., M} and (¥ ~ Categorical(¢).

2. A random variable is Categorical written X ~ Categorical(¢)
iff
P(X =2) =p(x;$) = ¢o

where x € {1,..., M} and 2%21 ¢m = 1. The log-likelihood
of the data becomes:

N M
U(p) = Zlog Py St Z ¢m =1
=1 m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
HMLE _ No—m _ Di=1 I(z”) = m)

N N

71



Hidden Markov Model (v1

0.8 5 90802 |0].5l08.02

A 4
0 o =il N iNG
y
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Hidden Markov Model (v1)

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, ,Vt, k
Initial probs, C, where P(Y; = k) = Ck,Vk

ol .8 O S|C O S C
= '1 O|.9.08.02 O|.9.08.02
' S 2.7/ S 217 .

Cla
C .9 0 9 0 |.1

‘0000

Joint Distribution (probability mass function):

p(x,y) =p(y1,C <Hp i | yr, A ) (Hp(yt | yt_1,3)>

.O L] .
© | W | 3min

Clo| o
= Cyl (H Ayt,$t> <H Bytlayt>
t=1 t=2




Supervised Learnmg for HMM (v1)

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

_________

Data: D = {(x,y@)}¥, wherex = [z,,... Tandy = [y1,...,yr|"
Likelihood:

((A,B,C) Zlogp @) y@ 1A, B,C)

N
=> Zlogp ), B) Zlogp [y, A)
i=1
trar?silon emission
MLE:
A,B,C = argmax /(A, B, C)
A.B,C
N
= C = argmax

B = argmaXZZIng ?/tL) | Yt )1=B)

=1 t=2
= argmaxZZlogp Xy (0 yf A)
i=1 t=1
We can solve the above in closed form, which yields...
. # =k
Ck; = T, Vk
. #@” =kandy?, =)
Bijr = T ) Vi, k
#(Yi—1 = J)
) (i) _ (i) _
Aj7k — #(:Ct k and yt 3)7 VJ, k,

#(w? =)



