M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

|r—] School of Computer Science
MACHINE LEARNING Carnegie Mellon University

%

Hidden Markov Models
(Part II)

EEEEEEEEEE

Matt Gormley
Lecture 19
Mar. 27, 2023

Reminders

 Practice Problems: Exam 2
— Out: Fri, Mar. 24

* Exam 2
— Thu, Mar. 30, 6:30pm - 8:30pm

* Homework 7: Hidden Markov Models
— Out: Fri, Mar. 31
— Due: Mon, Apr. 10 at 11:59pm

SUPERVISED LEARNING FOR
HMMS

Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x|0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE

MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die N times. That is, we have data

D= {x(i)}i\le
where () € {1,..., M} and z(¥) ~ Categorical(¢).

2. A random variable is Categorical written X ~ Categorical(¢)
iff

P(X =) =p(z;¢) = ¢

where z € {1,...,M}and 3. _. ¢,, = 1. The log-likelihood
of the data becomes:

N M
U(d) = Zlog Py St Z Pm =1
=1 m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
HMLE Ne=m _ >icg (2 = m)
i N N

Hidden Markov Model (v1

0181 5 gl08.02 |0].9l08.02

v
(===)—()—(
¢ \

0|.1[.2]3] | @ @ 0|.1].2].3] | @ @

Hidden Markov Model (v1)

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;_1 = j) = B i, Vt, k
Initial probs, C, where P(Y; = k) = Ck, Vk

o .8 OlS|C OlS|C
= '1 O|.908.02 O|.908.02
: S|.2/.7 .1 S 2.7
C|.1
C C|l9/0 1 C|l9/ 0 1

'0==0"""0""0

Joint Distribution (probability mass function):

p(x,y) =py:,C (Hp Tt | ye, A) (Hp(yt | ytlaB)>

.o L] .
© |§ [w | 3min

Clo|o
— Cy1 <H Ayt,xt> <H Bytlayt>
t=1 t=2

Supervised Learning for HMM (v1)

Learning an
HMM

decomposes
into solving two
(independent)
Mixture Models

Data: D = {(x,y)}¥ wherex = [z1,...,z7]Tandy = [y1,...,y7]T
Likelihood:

((A,B,C) = Zlogp @) vy | A,B,QC)

N
-y zlogp 1) let . A)

TV
transition emission

MLE:

A.B,C= argmax /(A, B, C)
A.B.C

N

= C= argmax
max)

= argmaxz Zlogp (@) \ yg)1»B)

i=1 t=2

A= argznaxz Z logp(z(” |y, A)

=1 t=1

We can solve the above in closed form, which yields...

A (&) _ .
5 #(y = kandy?; = j)
Bj = , Vi k

#W =)

. @) — kand g =

#(y? = 7)

HMM (two ways)

Hidden Markov Model (v2)

10.9].08.02/ 0] 10/.9.08.02| 0
Cl.9/0/ 1 0]|C .9/0 .10

9200000
Y,

vI3]513] @ @ vI315(3]
p 01043 plo1o]3]

Hidden Markov Model (v2)

Hidden Markov Model (v2)

Joint Distribution (probability mass function):
yo = START

p(x,yly0) = | [P(we|ye)p(yelye—1)
t—=1

T
H Yt , Tt yt 1,Yt

Supervised Learning for HMM (v2)

Learnlng an Data: D = {(X“ y(l)}N where x = [z1,...,] andy = [yl,...,yT]
HMM We assume y(() " — START for all i

decomposes Likelihood:

into solving two N

(independent) =3 logp(x®,y® | A, B)

Mixture Models i=1

N
=S [E 6 152, B) +logplal” | ", A)
=1 t=1

-
tran5|t|on emission

MLE:

P

A,B = argmax (A, B)
A.B,C

éB—argmaXZZIng |yt 1,B)

=1 t=1

1

1

1

1

1

1

1

I (1)

" = argmax log p(z Yy, A
i Z Z U A)
1

1

1

1

1

=1 t=1

We can solve the above in closed form, which yields...

. #y(i)_kandy() =7)
#(yt 1= .7)

(i) _ i
A x;’ = kand =]
o od Yo =) i
#y ' =17J)

BACKGROUND: MESSAGE PASSING

Great Ideas in ML: Message Passing
Count the soldiers

21

Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

| +I+ 3=60f
us
\

only sek
my incoming

messages

22

Great Ideas in ML: Message Passing

Count the soldiers

here's
of me

Belief:
Must be

i+l 4=6 of
us

BonIy sek
my incoming
messages

23

Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

‘ N
\‘ ~ Wi
~
J“%’ 2

25

Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

®) P
| |
4 y

Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree
o

‘\(")
\}/T wouldn't work correctly
v with a 'loopy" (cyclic) graph

INFERENCE FOR HMMS

Inference

Question:
True or False: The joint probability of the observations

and the hidden states in an HMM is given by:

T-1
H Ayt Tt H BytayH—l
t=1

PX=x,Y=y)=C,

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, , Vt, k
Initial probs, C, where P(Y; = k) = Ck, Vk

Inference

Question:

True or False: The probability of the observations
inan HMM is given by:

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, , Vt, k
Initial probs, C, where P(Y; = k) = Ck, Vk

Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

THE SEARCH SPACE FOR
FORWARD-BACKWARD

Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {z™, y(n)}fzvzl
Sample 1: ‘ ‘ @ ‘ '
Sample 2: ‘ ‘ ‘ ‘ ‘
O © 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
CHNONNS,
Sample 4: ' ‘ ‘ ' ‘

35

Example: HMM for POS Tagging

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) — (3 * 8*% 2% 5 *)

v n/p d
A1.41(.21.3

pl-2]3]-2].3

<START>

36

Example: HMM for POS Tagging

Could be verb or noun Could be adjective or verb Could be noun or verb

37

Inference for HMMs

Whiteboard

— Brute Force Evaluation
— Forward-backward search space

THE FORWARD-BACKWARD
ALGORITHM

How is efficient computation even
possible?

* The short answer is dynamic programming!

* The key idea is this:

— We first come up with a recursive definition for the
quantity we want to compute

— We then observe that many of the recursive
intermediate terms are reused across timesteps and
tags

— We then perform bottom-up dynamic programming by
running the recursion in reverse, storing the
intermediate quantities along the way!

* This enables us to search the exponentially large
space in polynomial time!

41

Inference for HMMs

Whiteboard

— Forward-backward algorithm
(edge weights version)

Forward-Backward Algorithm

1. Initialize
o (START) = 1 ao(k) = 0, Vk # START
Br+1(END) =1 Bryi(k) =0, Vk # END
Definitions
ay(k) £ p(a1,. .., 2,y = k) 2. Forward Algorithm
Bu(k) = pl@ess, ... or [ye = k) fort=1,..., T+ 1:
fork=1,..., K:
Assume =
k p— p— k _) pr— k‘ _ pr—)
Yo — START at (k) ;p(wt |yt = k)ar—1(G)p(ye = k | ye—1 = J)
= END
At 3. Backward Algorithm
fort=1T,...,0:
fork=1,..., K:
K
Bi(k) =Y p(@er1 | Yr1 = H)Ber(DpWesr =3 | ye = k)
j=1

4. Evaluation p(x) = ap4+1(END)

ot (k) B (k)

5. Marginals p(y; = k | x) = p(x)

Forward-Backward Algorithm

1. Initialize
oo (START) = 1 ao(k) = 0, Vk # START
Br.1(END) = 1 Bri1(k) =0, Vk # END
Definitions
ay(k) = p(x1, ..., 2,y = k) 2. Forward Algorithm
Bu(k) £ p(@rts,- - o |4 = By fort=1,..., 7T+ 1:
fork=1,..., K:
Assume) =
g <|: a (k) Z (24 | ye = k)1 ()p(ye = k | ye—1 = J)
= END
T o(k2T) | O(K) ward Algorithm
fort =
Brute force = ,...,K:
algorithm &€ . _ ‘
wouldbe & > p@er | Y1 =)Brr(Dpyesr =5 | ye = k)
O(KT) o=t
4. Evaluation p(x) = ap41(END)

s (k) B () »

5. Marginals p(y; = k | x) = == 75

EXAMPLE: FORWARD-BACKWARD
ON THREE WORDS

Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb Could be noun or verb

46

Forward-Backward Algorithm

ANaANa

Forward-Backward Algorithm

START

ATEASSS
oz S
OO0

&
G
g

* Let’s show the possible values for each variable

48

Forward-Backward Algorithm

* Let’s show the possible values for each variable

49

Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

* And what the 7 transition / emission factors think of it ...
51

Forward-Backward Algorithm

V nn|la
v 1|64
n 8|4 |0.1
. alo.1 8o A/ v
N
[]
START n n \ n
Olud| 0
cl 0 O
aag a a a
v i3/5|3
ni4|5 2
a 0.10.2/0.1

* Let’s show the possible values for each variable
* One possible assignment
* And what the 7 transition / emission factors think of it ...

Viterbi Algorithm: Most Probable Assignment

A\ "
A % W A\ B(a,END) A
WA W

* Sop(van)=(1/Z) * product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product

Viterbi Algorithm: Most Probable Assignment

<) A /"\ A
o AL RS
A (a,END)

A(pref., a)

* Sop(van)=(1/Z) * product weight of one path

54

Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
> (1/7) * total weight of VANE

Forward-Backward Algorithm: Finds Marginals

n A <A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/2) * total weight of VANE

Forward-Backward Algorithm: Finds Marginals

™

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
> (1/7) * total weight of VNG

Forward-Backward Algorithm: Finds Marginals

n A <A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/2) * total weight of NG

Forward-Backward Algorithm: Finds Marginals

= total weight of these
path preﬂgxes

59

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

- = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) ”

Forward-Backward Algorithm: Finds Marginals

= total weight of these = total weight of these
path preﬂgxes (@a+b+0) - path suff§<es (x+y+2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Forward-Backward Algorithm: Finds Marginals

. % o
4. Alpref,n)

total weight of o/l paths throughA
= o) Aref,n) By(n) :

Forward-Backward Algorithm: Finds Marginals

A “belief that Y, =v”’

el > “belief that ¥, =n”
:0‘2(‘7) Bz(vz
-
A(pref., v)

total weight of A

= (V) A(pref, v) B,(v)

63

Forward-Backward Algorithm: Finds Marginals

v “belief that Y, =v”’

“belief that Y, =n"

P(@)
“belief that ¥, =a”
sum=2
A(pret., a) (total weight
of all paths)

total weight of A

= o(a) A(pref,a) B,(a)

64

Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb Could be noun or verb

65

THE FORWARD-BACKWARD
ALGORITHM

Forward-Backward Algorithm

1. Initialize
o (START) = 1 ao(k) = 0, Vk # START
Br+1(END) =1 Bryi(k) =0, Vk # END
Definitions
ay(k) £ p(a1,. .., 2,y = k) 2. Forward Algorithm
Bu(k) = pl@ess, ... or [ye = k) fort=1,..., T+ 1:
fork=1,..., K:
Assume =
k p— p— k _) pr— k‘ _ pr—)
Yo — START at (k) ;p(wt |yt = k)ar—1(G)p(ye = k | ye—1 = J)
= END
At 3. Backward Algorithm
fort=1T,...,0:
fork=1,..., K:
K
Bi(k) =Y p(@er1 | Yr1 = H)Ber(DpWesr =3 | ye = k)
j=1

4. Evaluation p(x) = ap4+1(END)

ot (k) B (k)

5. Marginals p(y; = k | x) = p(x)

