

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Machine Learning as Function Approximation

Matt Gormley Lecture 2 Jan. 22, 2023

Q&A

Q: How many bonus points for HW1 did I get from the Background Test?

A: Lots of bonus points!

Q: Matt, how did you do on the Background Test?

- A: Well... I certainly didn't ace it.
- **Q:** Are you and I cut out for 10-301/601?

A: Yes! But we both have some studying to do...

Reminders

- Homework 1: Background
 - Out: Wed, Jan 19 (1st lecture)
 - Due: Wed, Jan 26 at 11:59pm
 - Two parts:
 - 1. written part to Gradescope
 - 2. programming part to Gradescope
 - unique policies for this assignment:
 - 1. unlimited submissions for programming (i.e. keep submitting until you get 100%)
 - 2. we will grant (essentially) any and all extension requests

Big Ideas

- 1. How to formalize a learning problem
- 2. How to learn an expert system (i.e. Decision Tree)
- 3. Importance of inductive bias for generalization
- 4. Overfitting

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

SUPERVISED MACHINE LEARNING

Medical Diagnosis

- Setting:
 - Doctor must decide whether or not patient is sick
 - Looks at attributes of a patient to make a medical diagnosis
 - (Prescribes treatment if diagnosis is positive)
- Key problem area for Machine Learning
- Potential to reshape health care

Medical Diagnosis

Interview Transcript

Date: Jan. 15, 2023 Parties: Matt Gormley and Doctor S. Topic: Medical decision making

Medical Diagnosis

Interview Transcript

Date: Jan. 15, 2023 **Parties:** Matt Gormley and Doctor S. **Topic:** Medical decision making

- Matt: Welcome. Thanks for interviewing with me today.
- Dr. S: Interviewing...?
- Matt: Yes. For the record, what type of doctor are you?
- Dr. S: Who said I'm a doctor?
- Matt: I thought when we set up this interview you said—
- Dr. S: I'm a preschooler.
- Matt: Good enough. Today, I'd like to learn how you would determine whether or not your little brother is allergic to cats given his symptoms.
- Dr. S: He's not allergic.
- Matt: We haven't started yet. Now, suppose he is sneezing. Does he have allergies to cats?
- Dr. S: Well, we don't even have a cat, so that doesn't make any sense.
- Matt: What if he is itchy; Does he have allergies?
- Dr. S: No, that's just a mosquito.
- [Editor's note: preschoolers unilaterally agree that itchiness is always caused by mosquitos, regardless of whether mosquitos were/are present.]

- Matt: What if he's both sneezing and itchy?
- Dr. S: Then he's allergic.
- Matt: Got it. What if your little brother is sneezing and itchy, plus he's a doctor.
- Dr. S: Then, thumbs down, he's not allergic.
- Matt: How do you know?
- Dr. S: Doctors don't get allergies.
- Matt: What if he is not sneezing, but is itchy, and he is a fox....
- Matt: ... and the fox is in the bottle where the tweetle beetles battle with their paddles in a puddle on a noodle-eating poodle.
- Dr. S: Then he is must be a tweetle beetle noodle poodle bottled paddled muddled duddled fuddled wuddled fox in socks, sir. That means he's definitely allergic.
- Matt: Got it. Can I use this conversation in my lecture?
- Dr. S: Yes

As a (supervised) binary classification task

As a (<u>supervised</u>) binary classification task

As a (supervised) <u>binary</u> classification task

As a (supervised)

examples

classification task

As a (supervised) binary classification task

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	У	X ₁	X ₂	x ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	Ν	Ν	Ν

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	У	X ₁	X ₂	x ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	Ν	Ν	Ν
2	-	Ν	Y	Ν	Ν
3	+	Y	Y	Ν	Ν
4	-	Y	Ν	Y	Y
5	+	Ν	Y	Y	Ν

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	У	X ₁	X ₂	x ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	x ₂ ⁽²⁾ Y	x ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N
3	y ⁽³⁾ +	x ₁ ⁽³⁾ Y	x ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N
4	y ⁽⁴⁾ -	x ₁ ⁽⁴⁾ Y	x ₂ ⁽⁴⁾ N	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y
5	y ⁽⁵⁾ +	x ₁ ⁽⁵⁾ N	x ₂ ⁽⁵⁾ Y	x ₃ ⁽⁵⁾ Y	x ₄ ⁽⁵⁾ N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

N = 5 training examples M = 4 attributes

ML as Function Approximation

Chalkboard

- ML as Function Approximation
 - Problem setting
 - Input space
 - Output space
 - Unknown target function
 - Hypothesis space
 - Training examples
 - Goal of Learning

Supervised Machine Learning

Learning Algorithm

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributos of the patient x_1, x_1, \dots, x_M

Supervised Machine Learning

- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unknown target function, c* : $X \rightarrow Y$ (the doctor's brain)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees)
- Learner is given N training examples D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., (x^(N), y^(N))} where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾) (history of patients and their diagnoses)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data

Supervised Machine Learning

- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an up own target function, $c^*: \mathcal{X} \to \mathcal{Y}$ (the doctor's black of the docto
 - Set, H, of candid (all possible deci consider:
- Learner is given N $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(2)}$
- Learner produces that best approxin c*(x) on the training
- **Classification**: the possible outputs are **discrete**
- Regression: the possible outputs are real-valued

Function Approximation

Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

Supervised Machine Learning

- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all values in [0, 2*pi])
 - Set of possible outputs, $y \in \mathcal{Y}$ (all values in [32]) \mathbb{R}
 - Exists an unknown target function, $c^*: \mathcal{X} \to \mathcal{Y}$ ($c^*(x) = sin(x)$)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible piecewise linear functions)
- Learner is given N training examples
 D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., (x^(N), y^(N))}
 where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾)
 (true values of sin(x) for a few random x's)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data

EVALUATION OF MACHINE LEARNING ALGORITHM

Function Approximation

Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

Evaluation of ML Algorithms

- Definition: loss function, $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$ 1.
 - Binary or 0-1 loss (for classification): 2.

$$\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases}$$

Error rate:

$$err(h, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(y^{(n)} \neq \hat{y}^{(n)}\right)$$

0

Aside: Indicator Function

Q: How do we evaluate a machine learning algorithm? A: Check its error rate on a separate test dataset, D_{test}

Error Rate

Consider a hypothesis h its...
 ... error rate over all training data:
 ... error rate over all test data:
 ... true error over all data:

 $error(h, D_{train})$ $error(h, D_{test})$ $error_{true}(h)$

This is the quantity we care most about! But, in practice, error_{true}(h) is **unknown**.

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

In-Class Exercise

What is the **training error** (i.e. *error rate on the training data*) of the **majority vote classifier** on this dataset?

Choose one of: {0/8, 1/8, 2/8, ..., 8/8}

LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION

<u>Algorithm 1</u> majority vote: predict the most common label in the training dataset

	У	X ₁	X ₂	x ₃	x ₄
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	Ν	Ν	Ν
-	-	Ν	Y	Ν	Ν
	+	Y	Y	Ν	Ν
\bigcup	-	Y	Ν	Y	Y
6	+	Ν	Y	Y	Ν

<u>Algorithm 2</u> memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict a random label

	У	X ₁	X ₂	x ₃	x ₄
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	Ν	Ν	N
-	-	Ν	Y	Ν	Ν
+	+	Y	Y	Ν	N
-	-	Y	Ν	Y	Y
+	+	N	Y	Y	Ν

The memorizer always gets zero training error!

Question: Is the memorizer algorithm learning?

ML as Function Approximation

Chalkboard

- Algorithm 1: Majority Vote
- Algorithm 2: Memorizer
- Aside: Does memorization = learning?

<u>Algorithm 3</u> decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

		у	X ₁	X ₂	x ₃	x ₄
pro	edictions	allergic?	hives?	sneezing?	red eye?	has cat?
	-	-	Y	Ν	Ν	Ν
way	+	(\neg)	Ν	Y 🔶	Ν	Ν
	+	+	Y	Y 🛩	Ν	Ν
	-	-	Y	Ν	Y	Y
	+	+	Ν	Υ 👉	Y	Ν

Nonzero training error, but perhaps still better than the memorizer Example decision stump: $h(x) = \begin{bmatrix} + \text{ if sneezing} = Y \\ - \text{ otherwise} \end{bmatrix}$

ML as Function Approximation

Chalkboard

- Algorithm 2: Decision Stump
- Algorithm 3 (preview): Decision Tree

Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000) Negative examples are C-sections

[833+,167-] .83+ .17-Fetal_Presentation = 1: [822+,116-] .88+ .12-| Previous_Csection = 0: [767+,81-] .90+ .10-| | Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16-| | | Fetal_Distress = 0: [334+,47-] .88+ .12-| | | Birth_Weight < 3349: [201+,10.6-] .95+ . | | | Birth_Weight >= 3349: [133+,36.4-] .78+ | | | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: [55+,35-] .61+ .39-Fetal_Presentation = 2: [3+,29-] .11+ .89-Fetal_Presentation = 3: [8+,22-] .27+ .73-