10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

HMMs

+
Bayesian Networks

Matt Gormley
Lecture 20
Mar. 29, 2023

Reminders

* Practice Problems: Exam 2
— Out: Fri, Mar. 24
* Exam 2
— Thu, Mar. 30, 6:30pm - 8:30pm
* Homework 7: Hidden Markov Models
— Out: Fri, Mar. 31
— Due: Mon, Apr. 10 at 11:59pm

THE FORWARD-BACKWARD
ALGORITHM

Forward-Backward Algorithm

Definitions /

[(k) = p(xlw"axt)yt :k)
[Bt xt—l—la“')xT ’ Yt :k)

Assume
1Yo = START

yri1 = END

. Initialize
ao(START) = 1 7 ao(k) = 0, Vk # START
6T.|_1(END) = 1 6T+1(k’) = O, Vk' 7£ END

. Forward Algorithm .
fort=1,..., T+ 1. ¢&— &,' ;; A
o J.:z Q/

fork=1,... K: «— .
or A"} A

K
at(k) = Jp(ﬂft | Yt = k)Oét 1(])?(% =k | Yt—1 = J)
jzll'—f agE——
. Backward Algorithm
fort=1T,...,0:
fork=1,... K:
K

k) =) p@is1 | yerr =)Bera()p(yers = 5 | ye = k)
=1

. Evaluation p(x) = ozTH(END)}/
. Marginals p(y: = k | x) = at(k2£§(k)]

Forward-Backward Algorithm

1. Initialize
ao(START) =1 ao(k) = 0, Vk # START
BT_|_1(END) = 1 BT_|_1<]€) = O, Vk 7£ END
Definitions
ay(k) £ p(x1,. ..,z y; = k) 2. Forward Algorithm
Be(k) £ p(@r+s,. - o7 |y = I fort=1,..., T+ 1:
fork=1,... K:
Assume) =
u : :
a(k) = x = k)ay_ —k|ly_1 =
yo — START ‘|: t(k) = Z (@t | ye = k)ar—1(7)p(ye = k | ye—1 = J)
= END
AR o(k2T) | O(K) ward Algorithm
fort =
Brute force ¥ 1, .. .,K:

algorithm

would be t(k) =) p(@iv1 | Yer1 = 3)Be1(F)pWer1 =7 | ye = k)
O(K™) 7=1
4. Evaluation p(x) = ap41(END)

5. Marginals p(y; = k | x) = % 8

Ik

Derivation of Forward Algorithm

Definition:

@(k) 2 p(x1,. . T8,y = k) 7

Derivation:
p(x1,...,xp,yr = END) @as shorthand for!yT — END ,

p(

= (3317 , LT ! yT) (Y7)t— y chain rule

:)E(xT | Yyr 5171, R oy A | | yT) (yT)J by cond indep of HMM

=p(ar | yr)p(x1, ..., T7—1, yT).g? by rev chain rule

= p(zr | yr) Z p(z1, . zr_1,yr—1]yT) by def of marginal
Yyr—1

= p(xr | yr) Z p(x1,. ., 2r—1,97 | yr—1)P(Y7-1) by chain rule
Yr—1 e

= p(xr | Y1) Z p(xy, ..oy |yr)p(yr | yr—1)p(yr—1) by condindept of HMM

b1 _ N

= p(xr | yr) Sj p(x1,...,27—1,yr—1)p(yr | Yy7-1) by rev chain rule
yr—1 J -
=p(zr | yr) Z ar—1(yr-1)p(yr | yr-1) by def of «

Yyr—1
10

FORWARD-BACKWARD IN LOG
SPACE

De

Ot

B

As:

Yo
yr

Forward-Backward Algorithm

1.

Problem:
Implementing F-B as shown
here could run into
underflow (i.e. floating point
precision issues).

Why?
Because the algorithm is still
multiplying O(T) probabilities
together. Each probability is
in [0,1] and so their product
can get very small.

One solution:
work in log-space!

. Marginals p(y; = k | x) =

Initialize

Oé()(START) =1 Oé()(k) = O, vk 7é START
Br+1(END) =1 Bri1(k) =0, Vk # END
Forward Algorithm

fort=1,..., 1T+ 1:
fork=1,... K:

Backward Algorithm

fort=1T,...,0:
fork=1,... K:
X
Bi(k) = D p(@esr | w1 = 5)Ber (1)p(Yrar = 3 | yr = k)
j=1
Evaluation p(x) = ap41(END)

Qg (k)ﬁt (k)
p(x)

Log-space Arithmetic

Log-space Multiplication

* Suppose you wish to multiply
two probabilities p, and p,
together to get p. = pa pPo

* Yet, you want to represent all
those numbers as the log of
their value:

— 0= Iog(pa)
— 0y, =log(py)
— O¢= Iog(pc)

* To compute o. from o, and oy,
we simply add them:
O, =0, + Oy,
= logépa) + log(py)
= IOg Pa pb)
= log(p)

Log-space Addition

Suppose you wish to add two
probabilities p, and p,, together
to get py = pa + Py, Yet all in log-
space (e.g. 04= log(pa))

To compute compute o4 from o,
and o, we must be more careful:

Ogq = IOg-Sum'eXp(Oar Ob)
= log(exp(0,) + exp(oy))

Problem: if we merely
implement log-sum-exp as
above, we’ll probably run into
underflow again b/c:

— Pa= exp(oa)

— Pp=exp(op)

Log-space Arithmetic

A careful implementation: I

1 def log—sum—exp(xq,...,TN): Log-space Additio
c =max(xi,...,x ,
2 N 1(121\7) (@, — @ * Suppose you wish to add two
3 Y=CT 082 n=) FXPHn — € probabilities p, and p,, together
4 return y to get py = P, + Py, Yet all in log-
| space (e.g. 04= log(pd))
Why does this work? « To compute compute o4 from o,
N and o, we must be more careful:
y = log Z exp(zy,)
”=1N 04 = log-sum-exp(0,, 0,)
= log(exp(0,) + exp(o
:>6Xp(y) = Zexp(gjn) g(p(a) p(b))
n=1

N * Problem: if we merely
= exp(y) = exp(c) Z exp(n) implement log-sum-exp as

exp(c) above, we’ll probably run into
N underflow again b/c:
= exp(y) = exp(c) Z exp(x, — ¢ — pa=exp(0,)
n=1 — Pp= exp(ob)
N

=y = c + log Z exp(z, — ¢)

n=1

Forward Algorithm (in log-space)

We can run the forward algorithm in log-space using log-multiplication and
log-addition. The backward algorithm is analogous.

Definitions Assume
| log at(k)!é logp(x1, ...,y = k) yo = START
1. Initialize
log ap(START) =0 log ag(k) = —o0, Vk # START

2. Forward Algorithm

fort=1,..., T+ 1 \/_/
fork =1,. 2

for; =1,.
0j = logp(a:t ’ ye = k) + IOgOét—l() +logp(ye =k | ye—1 = J)
log a; (k) = log-sum-exp(o1, . .., 0xk)

3. Evaluationlog p(x) = log a1 1(END)

THE VITERBI ALGORITHM

Inference for HMMs

Whiteboard

— Viterbi algorithm
(edge weights version)

Viterbi Algorithm

Definitions
A
wt(k) é max p(xlw"7xt7y17'°'7yt—17yt:k) >SUMe
Yi,---,Yt—1 yO — START
bt(k) = argmax p(xh sy Tt Yty - Yt—1, Yt = k) Yyr+1 — END
Yi,--Yt—1

_\1. Initialize
\VOLLV\V‘
~__f wo(START) = 1 wo(k) = 0, Vk # START

2. Viterbi Algorithm (, go,wé'
W

fort:1,...,T+1:"S @
0,/-\

fork=1,... K: ‘\)

wi(k) = max p(xy |y = k)wi—1(G)p(ye =k | ye—1 = j)
e jE{l,...,ff}l-———§3~—-—£ -

bi(k) = Targmax p(z¢ | ye = k)wi—1(J)p(ye =k | yr—1 =J
g€{1,....K}

3. Compute Most Probable Assignment
Y7 = br11(END)
fort=1T,...,1:
Ut = bey1(Pe41)

Viterbi Algorithm

Definitions
wt(k) é max p(xlw"7xt7y17"°7yt—1ayt:k) Assume
Yi,---,Yt—1 yO — START
bt(k) = argmax p(xla sy Tt Yty - Yt—1, Yt = k) Yyr+1 — END
Yls-- Yt —1
1. Initialize
wo(START) =1 wo(k) = 0, Vk # START
2. Viterbi Algorithm
© fort=1,....,T+1:
fork=1,... K:
h wi(k) = max p(x |y = k)wi—1()p(ye =k | yi—1 = 7)
je{1,....K}
_ bi(k) = argmax p(x; | ys = k)wi—1(J)p(ye = k | yi—1 = J)

je{1,....K}
2
O(K T) 3. Compute Most Probable Assignment

Brute force J7 = by (END)
algorithm fori — T 1.

would be . X
O(K") gt = bey1(Ge+1) 50

Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi f
algorithm run in , O(T*K?)

— Thanks to dynamic programming! /\&

Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its
corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

Mismatch between learning objective function and prediction objective

function

— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015

22

MBR DECODING

Inference for HMMs

o
— 'Lhrélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)

24

Minimum Bayes Risk Decoding

* Suppose we given a loss function(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

e A minimum Bayes risk (MBR) decoder /(x) returns
the variable assignment with minimum expected loss

under the model’s distribution A\‘ﬁ kfﬁs OJ;{‘Z,

hB(CE) — a,rgmin pre(Ia:)[g(@ y)P

Y
— arglmin Z'pe(y | w)f(z),g)
¥ = = |

Y
=

Minimum Bayes Risk Decoding

Consider some example loss functions:

Minimum Bayes Risk Decoding

Consider some example loss functions:

TO HMMS AND BEYOND...

Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(", x(), ..., x(N)}1
where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm

Since we don’t observe y, we define the marginal probability:

po(x) = > po(x,y)

o h kyE)’ B |

The log-likelihood of the data is thus:

HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
* Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

30

Slide from William Cohen

Higher-order HMMs

pE——

* 15t-order HMM (i.e. blgram HMM)

Higher-order HMMs
 15-order HMM (i.e. bigram HMM)

=0 ¢ o &

Hidden HMM (i.e. trlgram HIVHV\)

32

You should be able to...

1.

SIS

O 00

—
o

Learning Objectives |
Q1 Wt oo

Hidden Markov Models CL) ‘]’°° \/,QW ¢

Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning for an HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

Implement a minimum Bayes risk decoder with Hamming loss foran HMM

DIRECTED GRAPHICAL MODELS

Example: CMU Mission Control

Bloomberg

Businessweek | Technology

College Students Are About to Put a
Robot on the Moon Before NASA

A commercial spaceflight in May will take a Carnegie Mellon-designed rover,
named Iris, to the lunar surface.

An engineering model of the Iris rover at Carnegie Mellon University's Robotics Institute. Source: Carnegie
Melion University

By Katrina Manson
March 29, 2023 at 8:00 AM EDT

35

Bloomberg

rol

An engineering model of the Iris rover at Carnegie Mellon University's Robotics Institute. Source: Carnegie
Mellon University

By Katrina Manson
March 29, 2023 at 8:00 AM EDT

Share this article The 1 I
(NN
®)»)(n)(=)
®
oo)
J
fifi Gift this article

Follow the authors

@KatrinaManson

+ Get alerts for
Katrina Manson

Already a subscriber or Bloomberg Anywhere client? Sign In

Subscribe now for unlimited access to Bloomberg.com and the
Bloomberg app

Global news that uncovers a new tomorrow. Cancel anytime.

Claim This Offer

Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: CMU Mission Control

— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* |dea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network

Bayesian Network

@ @ p(X17X27X37X47X5) —
& p(X5|X5)p(Xa| X2, X3)
(%) p(X3)p(X2|X1)p(X1)

Bayesian Network

Definition:

(x)
(x,) (x5 P(X1,...,X7) = [P(X: | parents(X))

t=1

* A Bayesian Network Is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P

Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)

Example: Conditional probability tables (CPTs)
for discrete random variables

0.75

bO

0.33

0.25

b1

0.67

Quantitative Specification

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’bO a’b’ a’b? a'b’
cV 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
c? c’
d® (0.3 |05
d’ 07 |05

© Eric Xing @ CMU, 2006-2011

45

Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

~——

P(a,b,c.d) =
ANHoZa) BN(s, 2) P(a)P(b)P(c|a,b)P(d]c)

r— N
C~N(A+B,>)

P(D] C)

‘ D~N(uqg+C, Z4)
D

© Eric Xing @ CMU, 2006-2011

46

Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0

0.75

phO

s P(a)P(b)P(c|a,b)P(d|c)

a’

0.25

b1

P(a,b,c.d) =

0.67

|
o

C~N(A+B, Z.)

D~N(ug+C, Zy)

© Eric Xing @ CMU, 2006-2011

47

Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given

Familiar Models as Bayesian

Networks
Question: Answer: F(‘;)P(X «\\15 P(Xm hb

Match the model name to D
the corresponding Bayesian (v)

Network l/
Logistic Regressionﬂ? e J(x,)

Linear Regression

Bernoulli Naive Bayes

Gaussian Naive Bayes
1D Gaussian

Vi w o

GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES

What Independencies does a Bayes Net Model?

In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

+ This follows from P(Xj, . .. H P(X; | parents(X;))
l; g

T
H Xt|X17'°°7Xt—1)

* But what else does it imply?

Slide from William Cohen

What Independencies does a Bayes Net Model?

Three cases of interest...

What Independencies does a Bayes Net Model?

Three cases of interest...

Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)

55

