MACHINE LEARNING

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science
Carnegie Mellon University

HMMs

$+$
 Bayesian Networks

Matt Gormley
Lecture 20
Mar. 29, 2023

Reminders

- Practice Problems: Exam 2
- Out: Fri, Mar. 24
- Exam 2
- Thu, Mar. 30, 6:30pm - 8:30pm
- Homework 7: Hidden Markov Models
- Out: Fri, Mar. 31
- Due: Mon, Apr. 10 at 11:59pm

THE FORWARD-BACKWARD ALGORITHM

Forward-Backward Algorithm

Definitions

$$
\begin{aligned}
& \alpha_{t}(k) \triangleq p\left(x_{1}, \ldots, x_{t}, y_{t}=k\right) \\
& \beta_{t}(k) \triangleq p\left(x_{t+1}, \ldots, x_{T} \mid y_{t}=k\right)
\end{aligned}
$$

```
Assume
yo = START
yT+1}=\textrm{END
```

1. Initialize

$$
\begin{aligned}
\alpha_{0}(\mathrm{START}) & =1 \\
\beta_{T+1}(\mathrm{END}) & =1
\end{aligned}
$$

$$
\alpha_{0}(k)=0, \forall k \neq \mathrm{START}
$$

$$
\beta_{T+1}(k)=0, \forall k \neq \mathrm{END}
$$

2. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \alpha_{t}(k)=\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
$$

3. Backward Algorithm

$$
\begin{aligned}
& \text { for } t=T, \ldots, 0: \\
& \text { for } k=1, \ldots, K:
\end{aligned}
$$

$$
\beta_{t}(k)=\sum_{j=1}^{K} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}$ (END)
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

Forward-Backward Algorithm

1. Initialize

$$
\begin{aligned}
& \alpha_{0}(\mathrm{START})=1 \\
& \beta_{T+1}(\mathrm{END})=1
\end{aligned}
$$

$$
\alpha_{0}(k)=0, \forall k \neq \mathrm{START}
$$

Definitions
$\alpha_{t}(k) \triangleq p\left(x_{1}, \ldots, x_{t}, y_{t}=k\right)$
$\beta_{t}(k) \triangleq p\left(x_{t+1}, \ldots, x_{T} \mid y_{t}=k\right.$ 市

```
Assume
yo = START
yT+1}=\textrm{END
```

$$
\beta_{T+1}(k)=0, \forall k \neq \mathrm{END}
$$

. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \left\{\begin{array}{l}
\alpha_{t}(k)=\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{array}\right.
\end{aligned}
$$

O ($\mathrm{K}^{2} \mathrm{~T}$)
$\mathrm{O}(\mathrm{K})$ <ward Algorithm

$$
\text { for } t=T, \ldots, 0
$$

Brute force or $k=1, \ldots, K$:
algorithm would be $\mathrm{O}\left(\mathrm{K}^{\top}\right)$

$$
\beta_{t}(k)=\sum_{j=1}^{K} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}($ END $)$
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

Derivation of Forward Algorithm

Definition:

$$
\alpha_{t}(k) \triangleq p\left(x_{1}, \ldots, x_{t}, y_{t}=k\right)
$$

Derivation:

$$
\begin{aligned}
\alpha_{T}(\mathrm{END}) & =p\left(x_{1}, \ldots, x_{T}, y_{T}=\mathrm{END}\right) & & y_{T} \text { as shorthand for } y_{T}=\text { END } \\
& =p\left(x_{1}, \ldots, x_{T} \mid y_{T}\right) p\left(y_{T}\right) & & \text { by chain rule } \\
& =p\left(x_{T} \mid y_{T}\right) p\left(x_{1}, \ldots, x_{T-1} \mid y_{T}\right) p\left(y_{T}\right) & & \text { by cond indep of HMM } \\
& =p\left(x_{T} \mid y_{T}\right) p\left(x_{1}, \ldots, x_{T-1}, y_{T}\right) & & \text { by rev chain rule } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1}, y_{T-1}, y_{T}\right) & & \text { by def of marginal } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1}, y_{T} \mid y_{T-1}\right) p\left(y_{T-1}\right) & & \text { by chain rule } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1} \mid y_{T}\right) p\left(y_{T} \mid y_{T-1}\right) p\left(y_{T-1}\right) & & \text { by cond indept of HMM } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1}, y_{T-1}\right) p\left(y_{T} \mid y_{T-1}\right) & & \text { by rev chain rule } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} \alpha_{T-1}\left(y_{T-1}\right) p\left(y_{T} \mid y_{T-1}\right) & & \text { by def of } \alpha
\end{aligned}
$$

FORWARD-BACKWARD IN LOG SPACE

Forward-Backward Algorithm

1. Initialize

Problem:

Implementing F-B as shown here could run into underflow (i.e. floating point precision issues).

Why?

Because the algorithm is still multiplying $\mathrm{O}(\mathrm{T})$ probabilities together. Each probability is in $[0,1]$ and so their product can get very small.

One solution:

work in log-space!
$\alpha_{0}($ START $)=1$

$$
\beta_{T+1}(\mathrm{END})=1
$$

$$
\begin{aligned}
\alpha_{0}(k) & =0, \quad \forall k \neq \text { START } \\
\beta_{T+1}(k) & =0, \quad \forall k \neq \text { END }
\end{aligned}
$$

Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1: \\
& \text { for } k=1, \ldots, K: \\
& \quad \alpha_{t}\left(\frac{(h)}{}-\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)\right.
\end{aligned}
$$

Backward Algorithm

$$
\text { for } t=T, \ldots, 0 \text { : }
$$

$$
\text { for } k=1, \ldots, K \text { : }
$$

$$
\beta_{t}(k)=\sum_{j=1}^{1} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}$ (END)
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

Log-space Arithmetic

Log-space Multiplication

- Suppose you wish to multiply two probabilities p_{a} and p_{b} together to get $p_{c}=p_{a} p_{b}$
- Yet, you want to represent all those numbers as the log of their value:
$-o_{a}=\log \left(p_{a}\right)$
$-\mathrm{o}_{\mathrm{b}}=\log \left(\mathrm{p}_{\mathrm{b}}\right)$
$-\mathrm{o}_{\mathrm{c}}=\log \left(\mathrm{p}_{\mathrm{c}}\right)$
- To compute o_{c} from o_{a} and o_{b} we simply add them:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{c}} & =\mathrm{o}_{\mathrm{a}}+\mathrm{o}_{\mathrm{b}} \\
& =\log \left(\mathrm{p}_{\mathrm{a}}\right)+\log \left(\mathrm{p}_{\mathrm{b}}\right) \\
& =\log \left(\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}\right) \\
& =\log \left(\mathrm{p}_{\mathrm{c}}\right)
\end{aligned}
$$

Log-space Addition

- Suppose you wish to add two probabilities p_{a} and p_{b} together to get $p_{d}=p_{a}+p_{b}$, yet all in logspace (e.g. $\left.\mathrm{o}_{\mathrm{d}}=\log \left(\mathrm{p}_{\mathrm{d}}\right)\right)$
- To compute compute o_{d} from O_{a} and o_{b} we must be more careful:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{d}} & =\log -\text { sum- } \exp \left(\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right) \\
& =\log \left(\exp \left(\mathrm{o}_{\mathrm{a}}\right)+\exp \left(\mathrm{o}_{\mathrm{b}}\right)\right)
\end{aligned}
$$

- Problem: if we merely implement log-sum-exp as above, we'll probably run into underflow again b / c :
- $\mathrm{p}_{\mathrm{a}}=\exp \left(\mathrm{o}_{\mathrm{a}}\right)$
- $\mathrm{p}_{\mathrm{b}}=\exp \left(\mathrm{o}_{\mathrm{b}}\right)$

Log-space Arithmetic

A careful implementation:

$$
\begin{aligned}
& \text { def } \log -\operatorname{sum}-\exp \left(x_{1}, \ldots, x_{N}\right): \\
& c=\max \left(x_{1}, \ldots, x_{N}\right) \\
& y=c+\log \sum_{n=1}^{N} \exp \left(x_{n}-c\right) \\
& \quad \text { return } y
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& y=\log \sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\frac{\exp (c)}{\exp (c)} \sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\exp (c) \sum_{n=1}^{N} \exp \left(x_{n}-c\right) \\
\Rightarrow & y=c+\log \sum_{n=1}^{N} \exp \left(x_{n}-c\right)
\end{aligned}
$$

Log-space Addition

- Suppose you wish to add two probabilities p_{a} and p_{b} together to get $p_{d}=p_{a}+p_{b}$, yet all in logspace (e.g. $\left.\mathrm{o}_{\mathrm{d}}=\log \left(\mathrm{p}_{\mathrm{d}}\right)\right)$
- To compute compute o_{d} from o_{a} and o_{b} we must be more careful:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{d}} & =\log -\text { sum- } \exp \left(\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right) \\
& =\log \left(\exp \left(\mathrm{o}_{\mathrm{a}}\right)+\exp \left(\mathrm{o}_{\mathrm{b}}\right)\right)
\end{aligned}
$$

- Problem: if we merely implement log-sum-exp as above, we'll probably run into underflow again b/c:
- $\mathrm{p}_{\mathrm{a}}=\exp \left(\mathrm{o}_{\mathrm{a}}\right)$
- $\mathrm{p}_{\mathrm{b}}=\exp \left(\mathrm{o}_{\mathrm{b}}\right)$

Forward Algorithm (in log-space)

We can run the forward algorithm in log-space using log-multiplication and log-addition. The backward algorithm is analogous.

```
Definitions
log}\mp@subsup{\alpha}{t}{}(k)\triangleq\operatorname{log}p(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{t}{},\mp@subsup{y}{t}{}=k
```

Assume
$y_{0}=$ START

1. Initialize

$$
\log \alpha_{0}(\text { START })=0 \quad \log \alpha_{0}(k)=-\infty, \forall k \neq \text { START }
$$

2. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \quad \text { for } j=1, \ldots, K \text { : } \\
& \quad o_{j}=\log p\left(x_{t} \mid y_{t}=k\right)+\log \alpha_{t-1}(j)+\log p\left(y_{t}=k \mid y_{t-1}=j\right) \\
& \log \alpha_{t}(k)=\log \text {-sum-exp }\left(o_{1}, \ldots, o_{K}\right)
\end{aligned}
$$

3. Evaluation $\log p(\mathbf{x})=\log \alpha_{T+1}$ (END)

THE VITERBI ALGORITHM

Inference for HMMs

Whiteboard

- Viterbi algorithm
(edge weights version)

Viterbi Algorithm

Definitions

$$
\begin{aligned}
\omega_{t}(k) & \triangleq \max _{y_{1}, \ldots, y_{t-1}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right) \\
b_{t}(k) & \triangleq \underset{y_{1}, \ldots, y_{t-1}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)
\end{aligned}
$$

$$
y_{0}=\text { START }
$$

$$
y_{T+1}=\mathrm{END}
$$

1. Initialize

$$
\omega_{0}(\text { START })=1 \quad \omega_{0}(k)=0, \forall k \neq \text { START }
$$

2. Viterbi Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1: \\
& \qquad \begin{array}{r}
\text { for } k=1, \ldots, K \text { : } \\
\qquad \begin{array}{l}
\omega_{t}(k)
\end{array}=\max _{j \in\{1, \ldots, K\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right) \\
b_{t}(k)=\operatorname{argmax}_{j \in\{1, \ldots, K\}}^{\operatorname{argmax}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{array}
\end{aligned}
$$

3. Compute Most Probable Assignment

$$
\begin{aligned}
& \hat{y}_{T}=b_{T+1}(\mathrm{END}) \\
& \text { for } t=T, \ldots, 1: \\
& \quad \hat{y}_{t}=b_{t+1}\left(\hat{y}_{t+1}\right)
\end{aligned}
$$

Viterbi Algorithm

Definitions

$$
\begin{aligned}
\omega_{t}(k) & \triangleq \max _{y_{1}, \ldots, y_{t-1}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right) \\
b_{t}(k) & \triangleq \underset{y_{1}, \ldots, y_{t-1}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)
\end{aligned}
$$

$$
y_{T+1}=\mathrm{END}
$$

1. Initialize

$$
\omega_{0}(\text { START })=1 \quad \omega_{0}(k)=0, \forall k \neq \text { START }
$$

2. Viterbi Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \qquad \begin{aligned}
\text { for } k & =1, \ldots, K \\
& \omega_{t}(k)=\max _{j \in\{1, \ldots, K\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right) \\
& b_{t}(k)=\underset{j \in\{1, \ldots, K\}}{\operatorname{argmax}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
\end{aligned}
$$

3. Compute Most Probable Assignment

Brute force algorithm would be $\mathrm{O}\left(\mathrm{K}^{\top}\right)$

$$
\begin{aligned}
& \hat{y}_{T}=b_{T+1}(\mathrm{END}) \\
& \text { for } t=T, \ldots, 1: \\
& \quad \hat{y}_{t}=b_{t+1}\left(\hat{y}_{t+1}\right)
\end{aligned}
$$

Inference in HMMs

What is the computational complexity of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, $\mathrm{O}\left(\mathrm{K}^{\top}\right)$
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, $\mathrm{O}\left(\mathrm{T}^{*} \mathrm{~K}^{2}\right)$
- Thanks to dynamic programming!

Shortcomings of Hidden Markov Models

- HMM models capture dependences between each state and only its corresponding observation
- NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
- HMM learns a joint distribution of states and observations $\mathrm{P}(\mathbf{Y}, \mathbf{X})$, but in a prediction task, we need the conditional probability $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})$

MBR DECODING

Inference for HMMs

- Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function $l\left(y^{\prime}, \boldsymbol{y}\right)$ and are asked for a single tagging
- How should we choose just one from our probability distribution $p(\boldsymbol{y} \mid \boldsymbol{x})$?
- A minimum Bayes risk (MBR) decoder $h(\boldsymbol{x})$ returns the variable assignment with minimum expected loss under the model's distribution

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})] \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \ell(\hat{\boldsymbol{y}}, \boldsymbol{y})
\end{aligned}
$$

Minimum Bayes Risk Decoding
 $$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The 0-1 loss function returns 0 only if the two assignments are identical and l otherwise:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})
$$

The MBR decoder is:

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})(1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})) \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})
\end{aligned}
$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The Hamming loss corresponds to accuracy and returns the number of incorrect variable assignments:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i=1}^{V}\left(1-\mathbb{I}\left(\hat{y}_{i}, y_{i}\right)\right)
$$

The MBR decoder is:

$$
\hat{y}_{i}=h_{\boldsymbol{\theta}}(\boldsymbol{x})_{i}=\underset{\hat{y}_{i}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}\left(\hat{y}_{i} \mid \boldsymbol{x}\right)
$$

This decomposes across variables and requires the variable marginals.

TO HMMS AND BEYOND...

Unsupervised Learning for HMMs

- Unlike discriminative models $p(y \mid x)$, generative models $p(x, y)$ can maximize the likelihood of the data $D=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ where we don't observe any y's.
- This unsupervised learning setting can be achieved by finding parameters that maximize the marginal likelihood
- We optimize using the Expectation-Maximization algorithm

Since we don't observe \mathbf{y}, we define the marginal probability:

$$
p_{\boldsymbol{\theta}}(\mathbf{x})=\sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})
$$

The log-likelihood of the data is thus:

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right) \\
& =\sum_{i=1}^{N} \log \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}, \mathbf{y}\right)
\end{aligned}
$$

HMMs: History

- Markov chains: Andrey Markov (1906)
- Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
- Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
- Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
- McCallum: multinomial Naïve Bayes for text
- With McCallum, IE using HMMs on CORA

Higher-order HMMs

- $1^{\text {st }}$-order HMM (i.e. bigram HMM)

- $3^{\text {rd }}$-order HMM

Higher-order HMMs

- $1^{\text {st-order }}$ HMM (i.e. bigram HMM)

Learning Objectives

Hidden Markov Models

You should be able to...

1. Show that structured prediction problems yield high-computation inference problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
6. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: CMU Mission Control

Bloomberg
Businessweek|Technology
College Students Are About to Put a Robot on the Moon Before NASA

A commercial spaceflight in May will take a Carnegie Mellon-designed rover, named Iris, to the lunar surface.

An engineering model of the Iris rover at Carnegie Mellon University's Robotics Institute. Source: Carnegie Mellon University

By Katrina Manson
March 29, 2023 at 8:00 AM EDT

An engineering model of the Iris rover at Carnegie Mellon University's Robotics Institute. Source: Carnegie Mellon University

By Katrina Manson
March 29, 2023 at 8:00 AM EDT

Share this article

The US was the first and only country to put humans on the
(-) in moon, but NASA has been noticeably absent from the
(0
9 Gift this article landed the first lunar robotic rovers in the 1970s; India tried and failed to land one in 2019. The only lunar rover in

Follow the authors
@KatrinaManson

+ Get alerts for Katrina Manson

Subscribe now for unlimited access to Bloomberg.com and the Bloomberg app
Global news that uncovers a new tomorrow. Cancel anytime.

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: CMU Mission Control
- Writing Joint Distributions
- Idea \#1: Giant Table
- Idea \#2: Rewrite using chain rule
- Idea \#3: Assume full independence
- Idea \#4: Drop variables from RHS of conditionals
- Definition: Bayesian Network

Bayesian Network

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& \quad p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Bayesian Network

Definition:

$$
P\left(X_{1}, \ldots, X_{T}\right)=\prod_{t=1}^{T} P\left(X_{t} \mid \text { parents }\left(X_{t}\right)\right)
$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
- Qualitative Specification: G
- Quantitative Specification: P

Qualitative Specification

- Where does the qualitative specification come from?
- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data (i.e. structure learning)
- We simply prefer a certain architecture (e.g. a layered graph)

Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

a^{0}	0.75
a^{1}	0.25

b^{0}	0.33
b^{1}	0.67

$$
\begin{gathered}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c} \cdot \mathrm{~d})= \\
\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{~b}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}, \mathrm{~b}) \mathrm{P}(\mathrm{~d} \mid \mathrm{c})
\end{gathered}
$$

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables
$\mathrm{A} \sim \mathrm{N}\left(\mu_{a}, \Sigma_{a}\right) \quad \mathrm{B} \sim \mathrm{N}\left(\mu_{\mathrm{b}}, \Sigma_{\mathrm{b}}\right)$

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

c

Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

a^{0}	0.75
a^{1}	0.25

b^{0}	0.33
b^{1}	0.67

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Observed Variables

- In a graphical model, shaded nodes are "observed", i.e. their values are given

Example:

$$
P\left(X_{2}, X_{5} \mid X_{1}=0, X_{3}=1, X_{4}=1\right)
$$

Familiar Models as Bayesian Networks

Question:

Match the model name to the corresponding Bayesian Network

1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian

Answer:

GRAPHICAL MODELS: DETERMINING CONDITIONAL INDEPENDENCIES

What Independencies does a Bayes Net Model?

- In order for a Bayesian network to model a probability distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents.

- This follows from $P\left(X_{1}, \ldots, X_{T}\right)=\prod_{t=1}^{T} P\left(X_{t} \mid \operatorname{parents}\left(X_{t}\right)\right)$

$$
=\prod_{t=1}^{T} P\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right)
$$

- But what else does it imply?

What Independencies does a Bayes Net Model?
Three cases of interest...

What Independencies does a Bayes Net Model?
Three cases of interest...

Knowing Y decouples X and Z

V-Structure

Knowing Y couples X and Z

Whiteboard

