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Reminders

• Practice Problems: Exam 2
– Out: Fri, Mar. 24

• Exam 2
– Thu, Mar. 30, 6:30pm – 8:30pm

• Homework 7: Hidden Markov Models
– Out: Fri, Mar. 31
– Due: Mon, Apr. 10 at 11:59pm
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THE FORWARD-BACKWARD 
ALGORITHM
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Forward-Backward Algorithm
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Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)



Forward-Backward Algorithm
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βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END
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for k = 1, . . . ,K:
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4. Evaluation p(x) = αT+1(END)
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p(x)

O(K)O(K2T)

Brute force 
algorithm 
would be 

O(KT)



Derivation of Forward Algorithm
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Derivation:

Definition:

αt(k) ! p(x1, . . . , xt, yt = k)

αT (END) = p(x1, . . . , xT , yT = END) yT as shorthand for yT = END
= p(x1, . . . , xT | yT )p(yT ) by chain rule
= p(xT | yT )p(x1, . . . , xT−1 | yT )p(yT ) by cond indep of HMM
= p(xT | yT )p(x1, . . . , xT−1, yT ) by rev chain rule

= p(xT | yT )
∑

yT−1

p(x1, . . . , xT−1, yT−1, yT ) by def of marginal

= p(xT | yT )
∑

yT−1

p(x1, . . . , xT−1, yT | yT−1)p(yT−1) by chain rule

= p(xT | yT )
∑

yT−1

p(x1, . . . , xT−1 | yT )p(yT | yT−1)p(yT−1) by cond indept of HMM

= p(xT | yT )
∑

yT−1

p(x1, . . . , xT−1, yT−1)p(yT | yT−1) by rev chain rule

= p(xT | yT )
∑

yT−1

αT−1(yT−1)p(yT | yT−1) by def of α



FORWARD-BACKWARD IN LOG 
SPACE

11



Forward-Backward Algorithm
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for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)
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Problem:
Implementing F-B as shown 

here could run into 
underflow (i.e.  floating point 

precision issues).

Why? 
Because the algorithm is still 
multiplying O(T) probabilities 
together. Each probability is 
in [0,1] and so their product 

can get very small. 

One solution: 
work in log-space!



Log-space Arithmetic

Log-space Multiplication
• Suppose you wish to multiply 

two probabilities pa and pb
together to get pc = pa pb

• Yet, you want to represent all 
those numbers as the log of 
their value:
– oa = log(pa)
– ob = log(pb)
– oc = log(pc)

• To compute oc from oa and ob
we simply add them: 
oc = oa + ob

= log(pa) + log(pb) 
= log(pa pb) 
= log(pc)

Log-space Addition
• Suppose you wish to add two 

probabilities pa and pb together 
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely 
implement log-sum-exp as 
above, we’ll probably run into 
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)
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Log-space Arithmetic
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Why does this work?

y = log
N∑

n=1

exp(xn)

⇒ exp(y) =
N∑

n=1

exp(xn)

⇒ exp(y) =
exp(c)
exp(c)

N∑

n=1

exp(xn)

⇒ exp(y) = exp(c)
N∑

n=1

exp(xn − c)

⇒y = c+ log
N∑

n=1

exp(xn − c)

A careful implementation: 

1 def log−sum−exp(x1, . . . , xN):
2 c = max(x1, . . . , xN )

3 y = c+ log
∑N

n=1
exp(xn − c)

4 return y



Forward Algorithm (in log-space)
We can run the forward algorithm in log-space using log-multiplication and 
log-addition. The backward algorithm is analogous.
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Definitions
logαt(k) ! log p(x1, . . . , xt, yt = k)

Assume
y0 = START

1. Initialize

logα0(START) = 0 logα0(k) = −∞, ∀k $= START

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
for j = 1, . . . ,K:
oj = log p(xt | yt = k) + logαt−1(j) + log p(yt = k | yt−1 = j)

logαt(k) = log-sum-exp(o1, . . . , oK)

3. Evaluation log p(x) = logαT+1(END)



THE VITERBI ALGORITHM
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Inference for HMMs

Whiteboard
– Viterbi algorithm 

(edge weights version)
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Viterbi Algorithm
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Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)



Viterbi Algorithm
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Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)
© Eric Xing @ CMU, 2005-2015 22

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START



MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)

24
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

25

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 0 only if the two assignments 
are identical and 1 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

26

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



TO HMMS AND BEYOND…
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Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm

29

Beyond the scope of 

today’s lecture!



HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.
– McCallum:  multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

30
Slide from William Cohen



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

31

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden 
States, y

Observa
-tions, x



Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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DIRECTED GRAPHICAL MODELS
Bayesian Networks
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Example: CMU Mission Control
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Example: CMU Mission Control
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Directed Graphical Models 
(Bayes Nets)

Whiteboard
– Example: CMU Mission Control
– Writing Joint Distributions
• Idea #1: Giant Table
• Idea #2: Rewrite using chain rule
• Idea #3: Assume full independence
• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network

41



Bayesian Network

42

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

43

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))



Qualitative Specification
• Where does the qualitative specification 

come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a 

layered graph) 
– …

© Eric Xing @ CMU, 2006-2011 44



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

45© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification

46© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

47© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are 
“observed”, i.e. their values are given

48

X1

X3X2

X4 X5



Familiar Models as Bayesian 
Networks

49

Question:
Match the model name to 
the corresponding Bayesian 
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian 

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

μ σ2

X

A B

C D

E F



GRAPHICAL MODELS:
DETERMINING CONDITIONAL 
INDEPENDENCIES



What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability 
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants 
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

Slide from William Cohen

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))

=
T∏

t=1

P (Xt | X1, . . . , Xt−1)



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

53

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

54

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y 
decouples X and Z

Knowing Y 
couples X and Z

Three cases of interest…



Whiteboard

(The other two 
cases can be 
shown just as 
easily.)

55

Common Parent

Y

X Z

X �� Z | Y

Proof of 
conditional 
independence


