
HMMs
+

Bayesian Networks

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 20

Mar. 29, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Practice Problems: Exam 2
– Out: Fri, Mar. 24

• Exam 2
– Thu, Mar. 30, 6:30pm – 8:30pm

• Homework 7: Hidden Markov Models
– Out: Fri, Mar. 31
– Due: Mon, Apr. 10 at 11:59pm

2

THE FORWARD-BACKWARD
ALGORITHM

6

Forward-Backward Algorithm

7

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

Forward-Backward Algorithm

8

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

O(K)O(K2T)

Brute force
algorithm
would be

O(KT)

Derivation of Forward Algorithm

10

Derivation:

Definition:

αt(k) ! p(x1, . . . , xt, yt = k)

αT (END) = p(x1, . . . , xT , yT = END) yT as shorthand for yT = END
= p(x1, . . . , xT | yT)p(yT) by chain rule
= p(xT | yT)p(x1, . . . , xT−1 | yT)p(yT) by cond indep of HMM
= p(xT | yT)p(x1, . . . , xT−1, yT) by rev chain rule

= p(xT | yT)
∑

yT−1

p(x1, . . . , xT−1, yT−1, yT) by def of marginal

= p(xT | yT)
∑

yT−1

p(x1, . . . , xT−1, yT | yT−1)p(yT−1) by chain rule

= p(xT | yT)
∑

yT−1

p(x1, . . . , xT−1 | yT)p(yT | yT−1)p(yT−1) by cond indept of HMM

= p(xT | yT)
∑

yT−1

p(x1, . . . , xT−1, yT−1)p(yT | yT−1) by rev chain rule

= p(xT | yT)
∑

yT−1

αT−1(yT−1)p(yT | yT−1) by def of α

FORWARD-BACKWARD IN LOG
SPACE

11

Forward-Backward Algorithm

12

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

Problem:
Implementing F-B as shown

here could run into
underflow (i.e. floating point

precision issues).

Why?
Because the algorithm is still
multiplying O(T) probabilities
together. Each probability is
in [0,1] and so their product

can get very small.

One solution:
work in log-space!

Log-space Arithmetic

Log-space Multiplication
• Suppose you wish to multiply

two probabilities pa and pb
together to get pc = pa pb

• Yet, you want to represent all
those numbers as the log of
their value:
– oa = log(pa)
– ob = log(pb)
– oc = log(pc)

• To compute oc from oa and ob
we simply add them:
oc = oa + ob

= log(pa) + log(pb)
= log(pa pb)
= log(pc)

Log-space Addition
• Suppose you wish to add two

probabilities pa and pb together
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely
implement log-sum-exp as
above, we’ll probably run into
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

13

Log-space Arithmetic

Log-space Addition
• Suppose you wish to add two

probabilities pa and pb together
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely
implement log-sum-exp as
above, we’ll probably run into
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

14

Why does this work?

y = log
N∑

n=1

exp(xn)

⇒ exp(y) =
N∑

n=1

exp(xn)

⇒ exp(y) =
exp(c)
exp(c)

N∑

n=1

exp(xn)

⇒ exp(y) = exp(c)
N∑

n=1

exp(xn − c)

⇒y = c+ log
N∑

n=1

exp(xn − c)

A careful implementation:

1 def log−sum−exp(x1, . . . , xN):
2 c = max(x1, . . . , xN)

3 y = c+ log
∑N

n=1
exp(xn − c)

4 return y

Forward Algorithm (in log-space)
We can run the forward algorithm in log-space using log-multiplication and
log-addition. The backward algorithm is analogous.

15

Definitions
logαt(k) ! log p(x1, . . . , xt, yt = k)

Assume
y0 = START

1. Initialize

logα0(START) = 0 logα0(k) = −∞, ∀k $= START

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
for j = 1, . . . ,K:
oj = log p(xt | yt = k) + logαt−1(j) + log p(yt = k | yt−1 = j)

logαt(k) = log-sum-exp(o1, . . . , oK)

3. Evaluation log p(x) = logαT+1(END)

THE VITERBI ALGORITHM

16

Inference for HMMs

Whiteboard
– Viterbi algorithm

(edge weights version)

17

Viterbi Algorithm

19

Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)

Viterbi Algorithm

20

Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)

O(K2T)

Brute force
algorithm
would be

O(KT)

Inference in HMMs
What is the computational complexity of
inference for HMMs?

• The naïve (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

21

Shortcomings of
Hidden Markov Models

• HMM models capture dependences between each state and only its
corresponding observation
– NLP example: In a sentence segmentation task, each segmental state may depend

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

• Mismatch between learning objective function and prediction objective
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction

task, we need the conditional probability P(Y|X)
© Eric Xing @ CMU, 2005-2015 22

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START

MBR DECODING

23

Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of

hidden states, given a sequence of observations
(Viterbi decoding is a special case)

24

Four

Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are

asked for a single tagging
• How should we choose just one from our probability

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns

the variable assignment with minimum expected loss
under the model’s distribution

25

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The 0-1 loss function returns 0 only if the two assignments
are identical and 1 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

26

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The Hamming loss corresponds to accuracy and returns the number
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

27

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

TO HMMS AND BEYOND…

28

Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y)

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)}
where we don’t observe any y’s.

• This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm

29

Beyond the scope of

today’s lecture!

HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler (major player in

learning theory in 80’s) began to use HMMs for
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web

using logic programs, grammar induction, etc.
– McCallum: multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

30
Slide from William Cohen

Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

31

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

32

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden
States, y

Observa
-tions, x

Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

33

DIRECTED GRAPHICAL MODELS
Bayesian Networks

34

Example: CMU Mission Control

35

Example: CMU Mission Control

36

Directed Graphical Models
(Bayes Nets)

Whiteboard
– Example: CMU Mission Control
– Writing Joint Distributions
• Idea #1: Giant Table
• Idea #2: Rewrite using chain rule
• Idea #3: Assume full independence
• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network

41

Bayesian Network

42

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5

Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

43

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

Qualitative Specification
• Where does the qualitative specification

come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a

layered graph)
– …

© Eric Xing @ CMU, 2006-2011 44

a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

45© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification

46© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

47© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67

Example:

Observed Variables

• In a graphical model, shaded nodes are
“observed”, i.e. their values are given

48

X1

X3X2

X4 X5

Familiar Models as Bayesian
Networks

49

Question:
Match the model name to
the corresponding Bayesian
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

μ σ2

X

A B

C D

E F

GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

Slide from William Cohen

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

=
T∏

t=1

P (Xt | X1, . . . , Xt−1)

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

53

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

54

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y
decouples X and Z

Knowing Y
couples X and Z

Three cases of interest…

Whiteboard

(The other two
cases can be
shown just as
easily.)

55

Common Parent

Y

X Z

X �� Z | Y

Proof of
conditional
independence

