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Reminders

• Homework 7: Hidden Markov Models
– Out: Fri, Mar. 31
– Due: Mon, Apr. 10 at 11:59pm
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GRAPHICAL MODELS:
DETERMINING CONDITIONAL 
INDEPENDENCIES



What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability 
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants 
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

Slide from William Cohen

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))

=
T∏

t=1

P (Xt | X1, . . . , Xt−1)



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?
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Three cases of interest…
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Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?
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Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y 
decouples X and Z

Knowing Y 
couples X and Z

Three cases of interest…



Whiteboard

(The other two 
cases can be 
shown just as 
easily.)

7

Common Parent

Y

X Z

X �� Z | Y

Proof of 
conditional 
independence



The “Burglar Alarm” example
• Your house has a twitchy burglar 

alarm that is also sometimes 
triggered by earthquakes.

• Earth arguably doesn’t care 
whether your house is currently 
being burgled

• While you are on vacation, one of 
your neighbors calls and tells you 
your home’s burglar alarm is 
ringing.  Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?  

Burglar �� Earthquake | PhoneCall



The “Burglar Alarm” example
• After you get this phone call, 

suppose you learn that there was a 
medium-sized earthquake in your 
neighborhood. Oh, whew! Probably 
not a burglar after all.

• Earthquake “explains away” the 
hypothetical burglar.

• But then it must not be the case 
that 

even though

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Burglar �� Earthquake | PhoneCall

Burglar �� Earthquake



Markov Boundary
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Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children
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Markov Boundary
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Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
boundary of X6 is 
{X3, X4, X5, X8, X9, X10}



Markov Boundary
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Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

Theorem: a node is 
conditionally independent of 
every other node in the graph 
given its Markov boundary

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
boundary of X6 is 
{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents



D-Separation
Definition #1: 
Variables X and Z are d-separated given a set of evidence variables E 
(variables that are observed) iff every path from X to Z is “blocked”.

A path is “blocked” whenever:
1. ∃Y on path s.t. Y ∈ E and Y is a “common parent”

2. ∃Y on path s.t. Y ∈ E and Y is in a “cascade”

3. ∃Y on path s.t. {Y, descendants(Y)}  ∉ E and Y is in a “v-structure”
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If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …



D-Separation

Definition #2: 
Variables X and Z are d-separated given a set of evidence variables E iff there does 
not exist a path between X and Z in the undirected ancestral moral graph with E 
removed.
1. Ancestral graph: keep only X, Z, E and their ancestors
2. Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
4. Givens Removed: delete any nodes in E
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If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

⇒A and B connected
⇒ not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:
Example Query: A ⫫ B | {D, E}



SUPERVISED LEARNING FOR 
BAYES NETS
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Machine Learning
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The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE

18



Learning Fully Observed BNs

19

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs
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X1

X3X2

X4 X5



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and 
marginal distributions for a Bayes Net?

21

X1

X3X2

X4 X5



Learning Fully Observed BNs
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X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed 
Bayesian Network is 
equivalent to learning five 
(small / simple) independent 
networks from the same data



Learning Fully Observed BNs
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X1

X3X2

X4 X5

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax
✓1

log p(X1|✓1)

✓⇤2 = argmax
✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax
✓3

log p(X3|✓3)

✓⇤4 = argmax
✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax
✓5

log p(X5|X3, ✓5)

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these 
conditional and marginal

distributions for a Bayes Net?



Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?

24



Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?
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Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN 
NETWORKS

30



A Few Problems for Bayes Nets
Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

31

Can we 
use 

samples
?



Gibbs Sampling

34

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x(t)
x(t+1)



Gibbs Sampling
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Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1 )

x(t)



Gibbs Sampling
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(a)
x1
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P (x)

(b)
x1
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P (x1 |x(t)
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(c)
x1

x2

P (x2 |x1)
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

x(t)

x(t+3)

x(t+4)



Gibbs Sampling
Question:
How do we draw samples from a conditional distribution? 
y1, y2, …, yJ ∼ p(y1, y2, …, yJ | x1, x2, …, xJ )

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1)∼ p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ )

• y2
(t+1)∼ p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ )
• y3

(t+1)∼ p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ )
• …
• yJ

(t+1)∼ p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ )

Properties:
– This will eventually yield samples from 

p(y1, y2, …, yJ | x1, x2, …, xJ )
– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods
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Gibbs Sampling

Full conditionals 
only need to 
condition on the 
Markov 
boundary

38

• Must be “easy” to sample from 
conditionals

• Many conditionals are log-concave 
and are amenable to adaptive 
rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Learning Objectives
Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative 

story or a specification of a joint distribution
2. Draw a Bayesian network given a set of conditional independence 

assumptions
3. Define the joint distribution specified by a Bayesian network
4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem
5. Depict familiar models as Bayesian networks
6. Use d-separation to prove the existence of conditional indenpendencies in a 

Bayesian network
7. Employ a Markov boundary to identify conditional independence assumptions 

of a graphical model
8. Develop a supervised learning algorithm for a Bayesian network
9. Use samples from a joint distribution to compute marginal probabilities
10. Sample from the joint distribution specified by a generative story
11. Implement a Gibbs sampler for a Bayesian network

39



LEARNING PARADIGMS
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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REINFORCEMENT LEARNING
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Source: https://www.xkcd.com/242/

Reinforcement Learning

50

https://www.xkcd.com/242/


RL: Examples

51
Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/Source: https://twitter.com/alphagomovie



AlphaGo
52Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind



History of Reinforcement Learning
• Roots in the psychology of animal learning

(Thorndike,1911).

• Another independent thread was the problem of 
optimal control, and its solution using dynamic 
programming (Bellman, 1957).

• Idea of temporal difference learning (on-line 
method), e.g., playing board games (Samuel, 1959).

• A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

55© Eric Xing @ CMU, 2006-2011



What is special about RL?
• RL is learning how to map states to actions, so 

as to maximize a numerical reward over time.

• Unlike other forms of learning, it is a multistage 
decision-making process (often Markovian).

• An RL agent must learn by trial-and-error. (Not 
entirely supervised, but interactive)

• Actions may affect not only the immediate 
reward but also subsequent rewards (Delayed 
effect). 

56© Eric Xing @ CMU, 2006-2011



Elements of RL
• A policy

- A map from state space to action space.
- May be stochastic.

• A reward function
- It maps each state (or, state-action pair) to
a real number, called reward. 

• A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that 
state (or, state-action pair).

57© Eric Xing @ CMU, 2006-2011



Example: Robot in a Room

58© Eric Xing @ CMU, 2006-2011



Example: Robot in a Room

59© Eric Xing @ CMU, 2006-2011

Question: 
Is this policy optimal: yes 
or no? Briefly justify your 
answer.

Answer: (Hint: both yes 
and no are acceptable 
answers, I’m interested in 
your justification.)



Example: Robot in a Room

• Reward for each step -2

60© Eric Xing @ CMU, 2006-2011



Example: Robot in a Room

• Reward for each step: -0.1

61© Eric Xing @ CMU, 2006-2011



The Precise Goal
• To find a policy that maximizes the Value function.
– transitions and rewards usually not available

• There are different approaches to achieve this goal in 
various situations.

• Value iteration and Policy iteration are two more 
classic approaches to this problem. But essentially 
both are dynamic programming.

• Q-learning is a more recent approaches to this 
problem. Essentially it is a temporal-difference 
method.

62© Eric Xing @ CMU, 2006-2011



MARKOV DECISION PROCESSES

63



RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 𝒮 × 𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠! 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠! 𝑠, 𝑎) = 31 if 𝛿 𝑠, 𝑎 = 𝑠′
0 otherwise

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋

64

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Process (MDP)

• For supervised learning the PAC learning 
framework provided assumptions about 
where our data came from:

• For reinforcement learning we assume our 
data comes from a Markov decision process 
(MDP)

65



Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where  𝑟$ = 𝑅 𝑠$ , 𝑎$
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠! 𝑠$ , 𝑎$)

3. Total reward is ∑$'#( 𝛾$𝑟$
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state 
only depends on the current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠

66


